Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131254, 2024 May.
Article in English | MEDLINE | ID: mdl-38565362

ABSTRACT

Acorus tatarinowii, a famous traditional Chinese medicine, is used for the clinical treatment of memory impairment and dementia. In this research, AT50, the crude polysaccharide extracted from A. tatarinowii rhizome, significantly improved the memory and learning ability of mice with Alzheimer's disease (AD) and exerted excellent anti-neuroinflammatory effects. More importantly, AT50 returned the levels of NO, TNF-α, IL-1ß, PGE-2, and IL-6 in AD mouse brains to normal levels. To identify the active ingredients in AT50, a heteropolysaccharide ATP50-3 was obtained from AT50. Structural analysis indicated ATP50-3 consisted of α-L-Araf-(1→, →2)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, α-D-Xylp-(1→, →3,4)-ß-D-Xylp-(1→, →3)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-4-OAc-α-D-Galp-(1→, →3,4,6)-α-D-Galp-(1→, →4)-α-D-Glcp-(1→, →2,3,6)-ß-D-Glcp-(1→, →4,6)-α-D-Manp-(1→, →3,4)-α-L-Rhap-(1→, →4)-α-D-GalpA-(1→, and →4)-α-D-GlcpA-(1 â†’ residues and terminated with Xyl and Ara. Additionally, ATP50-3 significantly inhibited the release of proinflammatory factors in lipopolysaccharide-stimulated BV2 cells. ATP50-3 may be an active constituent of AT50, responsible for its anti-neuroinflammatory effects, with great potential to treat AD.


Subject(s)
Acorus , Anti-Inflammatory Agents , Polysaccharides , Rhizome , Acorus/chemistry , Animals , Rhizome/chemistry , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Male , Neuroinflammatory Diseases/drug therapy , Disease Models, Animal
2.
Front Genet ; 15: 1353118, 2024.
Article in English | MEDLINE | ID: mdl-38435062

ABSTRACT

Background: Sepsis, a global health challenge, necessitates a nuanced understanding of modifiable factors for effective prevention and intervention. The role of trace micronutrients in sepsis pathogenesis remains unclear, and their potential connection, especially with genetic influences, warrants exploration. Methods: We employed Mendelian randomization (MR) analyses to assess the causal relationship between genetically predicted blood levels of nine micronutrients (calcium, ß-carotene, iron, magnesium, phosphorus, vitamin C, vitamin B6, vitamin D, and zinc) and sepsis susceptibility, severity, and subtypes. The instrumental variables for circulating micronutrients were derived from nine published genome-wide association studies (GWAS). In the primary MR analysis, we utilized summary statistics for sepsis from two independent databases (UK Biobank and FinnGen consortium), for initial and replication analyses. Subsequently, a meta-analysis was conducted to merge the results. In secondary MR analyses, we assessed the causal effects of micronutrients on five sepsis-related outcomes (severe sepsis, sepsis-related death within 28 days, severe sepsis-related death within 28 days, streptococcal septicaemia, and puerperal sepsis), incorporating multiple sensitivity analyses and multivariable MR to address potential heterogeneity and pleiotropy. Results: The study revealed a significant causal link between genetically forecasted zinc levels and reduced risk of severe sepsis-related death within 28 days (odds ratio [OR] = 0.450; 95% confidence interval [CI]: 0.263, 0.770; p = 3.58 × 10-3). Additionally, suggestive associations were found for iron (increased risk of sepsis), ß-carotene (reduced risk of sepsis death) and vitamin C (decreased risk of puerperal sepsis). No significant connections were observed for other micronutrients. Conclusion: Our study highlighted that zinc may emerges as a potential protective factor against severe sepsis-related death within 28 days, providing theoretical support for supplementing zinc in high-risk critically ill sepsis patients. In the future, larger-scale data are needed to validate our findings.

3.
Zhongguo Zhong Yao Za Zhi ; 49(2): 471-486, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403323

ABSTRACT

This study combined network pharmacology, molecular docking, and in vitro experiments to explore the potential mechanism of the active components of the n-butanol fraction of Wenxia Formula(NWXF) combined with gefitinib(GEF) in treating non-small cell lung cancer(NSCLC). Ultra-performance liquid chromatography-quadrupole Orbitrap mass spectrometry(UPLC-Q-Orbitrap MS) was employed to detect the main chemical components of NWXF. The active components of NWXF were retrieved from SwissADME, and the candidate targets of these active components were retrieved from SwissTargetPrediction. Online Mendelian Inheritance in Man(OMIM) and GeneCards were searched for the targets of NSCLC. Cytoscape 3.9.0 and STRING were employed to build the protein-protein interaction(PPI) network with the common targets shared by NWXF and NSCLC. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment were performed in DAVID to predict the potential mechanisms. Finally, molecular docking between the main active ingredients and key targets was conducted in SYBYL-X 2.0. The methyl thiazolyl tetrazolium(MTT) assay was employed to evaluate the inhibitory effects of NWXF and/or GEF on the proliferation of human non-small cell lung cancer cells(A549 and PC-9). Additionally, the impact of NWXF on human embryonic lung fibroblast cells(MRC-5) was assessed. The effectiveness of the drug combination was evaluated based on the Q value. The terminal-deoxynucleoitidyl transferase mediated nick-end labeling(TUNEL) assay was employed to examine the apoptosis of A549 and PC-9 cells treated with NWXF and/or GEF. Quantitative real-time PCR(qRT-PCR) was employed to measure the mRNA levels of epidermal growth factor receptor(EGFR), c-Jun N-terminal kinase(JNK), and Bcl2-associated X protein(Bax) in the A549 and PC-9 cells treated with NWXF and/or GEF. Western blot was employed to determine the protein levels of EGFR, p-EGFR, JNK, p-JNK, and Bax in the A549 and PC-9 cells treated with NWXF and/or GEF. A total of 77 active components, 488 potential targets, and 49 key targets involved in the treatment of NSCLC with NWXF were predicted. The results of GO annotation showed that NWXF may treat NSCLC by regulating the biological processes such as cell proliferation, apoptosis, and protein phosphorylation. KEGG enrichment revealed that the key targets of NWXF in treating NSCLC were enriched in the mitogen-activated protein kinase(MAPK), phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT), hypoxia-inducible factor-1(HIF-1), and microRNA-related signaling pathways. Molecular docking results showed that 91.9% of the docking scores were greater than 5, indicating the strong binding capability between main active components and key targets. The cell experiments demonstrated that NWXF combined with GEF synergistically inhibited the proliferation, promoted the apoptosis, decreased p-EGFR/EGFR and p-JNK/JNK values, down-regulated the mRNA levels of EGFR and JNK, and up-regulated the mRNA and protein levels of Bax in A549 and PC-9 cells. In conclusion, NWXF combined with GEF can regulate the EGFR/JNK pathway to promote the apoptosis of NSCLC cells, thus treating NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Gefitinib/pharmacology , 1-Butanol , bcl-2-Associated X Protein , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors , RNA, Messenger , Drugs, Chinese Herbal/pharmacology
4.
Nat Commun ; 14(1): 5451, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673856

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , PPAR alpha/genetics , Bile Acids and Salts , Cytoplasm , Mice, Knockout , Fatty Acids
5.
Front Cardiovasc Med ; 9: 1002378, 2022.
Article in English | MEDLINE | ID: mdl-36407468

ABSTRACT

Objective: To evaluate the effectiveness and safety of Linggui Zhugan decoction (LZD) as an adjunct treatment of premature contraction in patients with coronary heart disease. Methods: PubMed, Embase, Web of Science, ClinicalTrials.gov Cochrane Library, Chinese Knowledge Infrastructure, Wanfang database, Sino Med, and VIP database were searched from inception until July 2022. Two reviewers independently selected randomized controlled trials assessing the effectiveness of LZD combined with conventional antiarrhythmic drugs in treating premature contraction in patients with coronary heart disease compared to conventional antiarrhythmic drugs only. The clinical effectiveness was considered as the primary outcome, and the times of premature junctional beats in 24 h after treatment along with adverse reactions were considered secondary outcomes. The Cochrane risk of bias 2 tool was used for the risk of bias assessment. Meta-analysis was conducted using RevMan 5.4.1. and RStudio software. Results: A total of 14 studies including 1,236 participants were included. The primary outcome indicated that, compared with antiarrhythmic drugs alone (especially ß receptor blockers), the combination of LZD and conventional antiarrhythmic drugs resulted in higher clinical effectiveness (RR = 1.29, 95% CI: [1.22,1.36]) and lower number of premature junctional beats in 24 h (MD = -71.14, 95% CI: [-76.23, -66.06]) at end-of-intervention. The differences in adverse reactions (RR = 0.42, 95%CI: [0.15, 1.14], p = 0.09) were not significant. The risk of bias was marginally high among the studies. Funnel plot and Harbord's test (t = 1.63, p = 0.1346) indicated no existence of publication bias. Conclusion: The current evidence shows that LZD can increase the effectiveness of conventional antiarrhythmic drugs for treating premature contraction in patients with coronary heart disease. However, the results should be interpreted with caution because of the high overall risk of bias. Future studies with appropriate randomization and double-blind methods are warranted to confirm these findings. Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=296628], identifier [CRD42022296628].

6.
Front Pharmacol ; 13: 972351, 2022.
Article in English | MEDLINE | ID: mdl-36249818

ABSTRACT

Objectives: Our goals were to evaluate the antidepressant efficacy of Yang-Xin-Jie-Yu Decoction (YXJYD) in Chronic Unpredictable Mild Stress (CUMS)-induced depression rat model and to investigate the underlying mechanisms. Design: We used CUMS-induced depression rat model to evaluate whether oral administration of YXJYD with different doses (2.1 g/kg, 1.05 g/kg and 0.525 g/kg, respectively) improve the depressive-like symptoms, and then performed UHPLC-Q-TOF-MS to explore the active ingredients of YXJYD. Subsequently, rat's cecal contents, serum, and urine were collected from the control group, CUMS model group, and YXJYD high-dose (2.1 g/kg) treatment group. The 16S rRNA sequencing was performed on the cecal contents, based on Illumina MiSeq platform, and ANOVA analysis were used to analyze the composition variety and screen differential expression of gut bacteria in the three groups. 1H Nuclear Magnetic Resonance (NMR) analysis was used for analyzing the metabolites obtained from cecal contents, serum, and urine, and KEGG enrichment analysis was used to identify pathways of differential metabolites. An integrated 16S rRNA sequencing and metabolomic data were conducted to characterize the underlying mechanisms of YXJYD Results: The gut microbial communities, and serum, cecal content, urine metabolic compositions were significantly significantly altered in CUMS-induced depressive rats, while YXJYD effectively ameliorated the CUMS-associated gut microbiota dysbiosis, especially of Monoglobus, and alleviated the disturbance of serum, cecal content, urine metabolome and reversed the changes of key depressive and gut microbiota-related metabolites, such as succinic acid, taurine, hippuric acid, melatonin. With an integrated study of the gut microbiota and metabolomes, we identified the pathway of tricarboxylic acid cycle (TCA cycle) and propanoate metabolism as the regulated target of YXJYD on host-microbiome interaction. Conclusion: Our findings further confirmed the imbalance of metabolism and intestinal microbial is closely related to CUMS-induced depression. YXJYD regulates gut microbiome to affect body metabolomes and then produce antidepressant-like effect in CUMS-induced depressive rats while its molecular mechanism possibly be increased Monoglobus abundance in gut microbiota and regulated the TCA cycle pathway and propanoate metabolism in host.

7.
Phytomedicine ; 97: 153922, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032732

ABSTRACT

BACKGROUND: Although Qing-Fei-Pai-Du decoction (QFPDD) is extensively used clinically to treat COVID-19 patients, the mechanism by which it modulates the immunological and metabolic functions of liver tissue remains unknown. PURPOSE: The purpose of this study is to investigate the mechanism of action of QFPDD in the treatment of mice with coronavirus-induced pneumonia by combining integrated hepatic single-cell RNA sequencing and untargeted metabolomics. METHODS: We developed a human coronavirus pneumonia model in BALB/c mice by infecting them with human coronavirus HCoV-229E with stimulating them with cold-damp environment. We initially assessed the status of inflammation and immunity in model mice treated with or without QFPDD by detecting peripheral blood lymphocytes and inflammatory cytokines. Then, single-cell RNA sequencing and untargeted metabolomics were performed on mouse liver tissue. RESULTS: HCoV-229E infection in combination with exposure to a cold-damp environment significantly decreased the percentage of peripheral blood lymphocytes (CD4+ and CD8+ T cells, B cells) in mice, which was enhanced by QFPDD therapy. Meanwhile, the levels of inflammatory cytokines such as IL-6, TNF-α, and IFN-γ were significantly increased in mouse models but significantly decreased by QFPDD treatment. Single-cell RNA sequencing analysis showed that QFPDD could attenuate disease-associated alterations in gene expression, core transcriptional regulatory networks, and cell-type composition. Computational predictions indicated that QFPDD rectified the observed aberrant patterns of cell-cell communication. Additionally, the metabolic profiles of liver tissue in the Model group were distinct from mice in the Control group, and QFPDD significantly regulated hepatic purine metabolism. CONCLUSION: To the best of our knowledge, this study is the first to integrate hepatic single-cell RNA sequencing and untargeted metabolomics into a TCM formula and these valuable findings indicate that QFPDD can improve immune function and reduce liver injury and inflammation.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Metabolomics , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Drugs, Chinese Herbal/therapeutic use , Humans , Liver , Mice , Mice, Inbred BALB C , Sequence Analysis, RNA , Single-Cell Analysis
8.
Chin J Acad Radiol ; 5(1): 20-28, 2022.
Article in English | MEDLINE | ID: mdl-34222797

ABSTRACT

Background: Coronary artery calcification (CAC) is an independent risk factor of major adverse cardiovascular events; however, the impact of CAC on in-hospital death and adverse clinical outcomes in patients with coronavirus disease 2019 (COVID-19) remains unclear. Objective: To explore the association between CAC and in-hospital mortality and adverse events in patients with COVID-19. Methods: This multicenter retrospective cohort study enrolled 2067 laboratory-confirmed COVID-19 patients with definitive clinical outcomes (death or discharge) admitted from 22 tertiary hospitals in China between January 3, 2020 and April 2, 2020. Demographic, clinical, laboratory results, chest CT findings, and CAC on admission were collected. The primary outcome was in-hospital death and the secondary outcome was composed of in-hospital death, admission to intensive care unit (ICU), and requiring mechanical ventilation. Multivariable Cox regression analysis and Kaplan-Meier plots were used to explore the association between CAC and in-hospital death and adverse clinical outcomes. Results: The mean age was 50 years (SD,16) and 1097 (53.1%) were male. A total of 177 patients showed high CAC level, and compared with patients with low CAC, these patients were older (mean age: 49 vs. 69 years, P < 0.001) and more likely to be male (52.0% vs. 65.0%, P = 0.001). Comorbidities, including cardiovascular disease (CVD) ([33.3%, 59/177] vs. [4.7%, 89/1890], P < 0.001), presented more often among patients with high CAC, compared with patients with low CAC. As for laboratory results, patients with high CAC had higher rates of increased D-dimer, LDH, as well as CK-MB (all P < 0.05). The mean CT severity score in high CAC group was also higher than low CAC group (12.6 vs. 11.1, P = 0.005). In multivariable Cox regression model, patients with high CAC were at a higher risk of in-hospital death (hazard ratio [HR], 1.731; 95% CI 1.010-2.971, P = 0.046) and adverse clinical outcomes (HR, 1.611; 95% CL 1.087-2.387, P = 0.018). Conclusion: High CAC is a risk factor associated with in-hospital death and adverse clinical outcomes in patients with confirmed COVID-19, which highlights the importance of calcium load testing for hospitalized COVID-19 patients and calls for attention to patients with high CAC. Supplementary Information: The online version contains supplementary material available at 10.1007/s42058-021-00072-4.

9.
J Ethnopharmacol ; 285: 114859, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34818573

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng (Burk) F. H. Chen is a well-known traditional Chinese medicine with a long history and is widely used in the treatment of cerebrovascular disease. Panax notoginseng saponins (PNS) are the main active ingredients in Panax notoginseng (Burk) F. H. Chen, and its injection is used to treat nerve damage caused by cerebral ischemia and other conditions. PNS is thought to alleviate cognitive impairment in patients with Alzheimer's disease; however, its mechanism of action is unclear. AIM OF THE STUDY: We elucidated the role of PNS in attenuating cellular mitochondrial damage caused by amyloid ß (Aß) protein and in protecting cell viability from the perspective of regulating autophagy. By investigating the effects of PNS on the targets regulating mitophagy, we wanted to reveal the autophagy related mechanism by which PNS attenuated Aß damage in neuronal cells. MATERIALS AND METHODS: The effect of PNS on the mitochondrial membrane potential of Aß-injured PC12 cells was detected using flow cytometry, which reflected the alleviating effect of PNS on mitochondrial damage. Using mRFP-GFP-LC3-transfected PC12 cells, the effect of PNS on cellular autophagy flux was observed using laser confocal microscopy. Formation of the intracellular autophagosome was observed using transmission electron microscopy, which reflected the activation of autophagy by PNS. The siPINK1 lentivirus was used to silence the PINK1 gene in PC12 cells to obtain siPINK1-PC12 cells. The effects of PNS on the expression of the PINK1 gene and on the autophagy-related proteins LC3II/Ⅰ, p62, PINK1, parkin, NDP52, and OPTN were observed to reveal the possible targets of PNS in regulating autophagy. RESULTS: After PNS treatment, the viability of Aß-injured PC12 cells improved and the mitochondrial membrane potential was restored. PNS treatment significantly enhanced the autophagy flux of damaged cells and increased the levels of LC3II/Ⅰ protein and decreased p62 protein, while significantly improving the structure and mitochondrial morphology of PC12 cells injured by Aß. These changes led to more autophagosomes wrapping around the damaged mitochondria and promoting the depletion of OPTN, a mitophagy receptor. After silencing the PINK1 gene, PNS could not alter the PINK1 gene and protein levels, but could still increase LC3II/Ⅰ, decrease p62 and OPTN, and significantly increase the amount of parkin. CONCLUSIONS: PNS could enhance the autophagic activity of cells, alleviate mitochondrial damage caused by Aß injury, and protect the activity of PC12 cells. It is possible that enhanced autophagy was achieved by promoting the recruitment of parkin protein to the mitochondrial receptors in a non-PINK1-dependent manner.


Subject(s)
Amyloid beta-Peptides/metabolism , Gene Expression Regulation/drug effects , Panax notoginseng/chemistry , Phytotherapy , Saponins/pharmacology , Ubiquitin-Protein Ligases/metabolism , Animals , Autophagy/drug effects , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , PC12 Cells , RNA Interference , Rats , Saponins/chemistry , Ubiquitin-Protein Ligases/genetics
10.
Phytomedicine ; 91: 153693, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34403877

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is an obesity-related metabolic disease that is highly associated with gut dysbiosis and inflammation. A botanical dietary supplement, mainly containing an herbal pair of white peony root and licorice as well as grape seeds and broccoli extracts (WLT), exerts auxiliary protection against chemical liver injury. However, it is unclear whether WLT protects against the development of NAFLD induced by a high energy diet. PURPOSE: To investigate the protective role of WLT against NAFLD development induced by a high-fat and high-sucrose (HFHS) diet and its mechanism of action. METHODS: We investigated the anti-NAFLD effects of WLT on a HFHS diet-induced NAFLD C57BL/6J mouse model by detecting the hepatic triglyceride (TG) level, performing histological examination of the liver tissue, and evaluating glucose tolerance and systemic inflammation. Then, we analyzed the impact of WLT on gut microbiota by 16S rRNA gene sequencing, followed by fecal microbiota transplantation. Furthermore, we performed hepatic transcriptomic analysis of mice with or without WLT treatment using the RNA sequencing approach. RESULTS: Our results showed that WLT supplement attenuated body weight gain, hepatic steatosis, glucose tolerance, and systemic inflammation in HFHS-fed mice. Moreover, WLT supplement altered the composition of gut microbiota, which contributed at least in part, to the anti-NAFLD effect. Meanwhile, WLT improved the intestinal integrity and comprehensively modulated the expression of hepatic genes in HFHS mice, particularly reducing the expression of genes in the toll-like receptor-mediated inflammatory pathway. CONCLUSION: WLT is protective against NAFLD formation induced by an HFHS diet, and its effect is associated with the modulation of gut microbiota and inflammation, highlighting the potential of WLT to reduce the risk of metabolic disorders as a functional dietary supplement.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Glycyrrhiza , Non-alcoholic Fatty Liver Disease , Paeonia , Plant Extracts , Animals , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Glycyrrhiza/chemistry , Inflammation/drug therapy , Liver , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Paeonia/chemistry , Plant Extracts/pharmacology , RNA, Ribosomal, 16S
11.
Foods ; 10(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34441640

ABSTRACT

The function of Hemerocallis citrina Baroni (daylily) on promoting lactation is reported in several ancient Chinese medicine books. However, nowadays, there is no conclusive data to support this statement. In this study, we investigated the effect of Hemerocallis citrina Baroni extract (HCE) on lactation insufficiency in chronic unpredictable mild stress (CUMS) dams and further explored the mechanism and functional components through network pharmacology. The results showed that HCE could increase the offspring's weight, serum prolactin (PRL), and oxytocin (OT) level of CUMS dams. Network pharmacology analysis revealed that the facilitation of HCE on lactation is the result of the comprehensive action of 62 components on 209 targets and 260 pathways, among this network, quercetin, kaempferol, thymidine, etc., were the vital material basis, signal transducer and activator of transcription 3 (STAT3), mitogen activity protein kinase 1 (MAPK1), tumor protein P53 (TP53), etc., were the core targets, and the prolactin signaling pathway was the core pathway. In addition, verification test results showed that HCE regulated the abnormal expression of the prolactin signaling pathway, including STAT3, cyclin D1 (CCND1), MAPK1, MAPK8, nuclear factor NF-kappa-B p105 subunit (NFKB1), and tyrosine-protein kinase (JAK2). In conclusion, HCE exhibited a facilitation of lactation insufficiency, in which quercetin, kaempferol, thymidine, etc., were the most important material basis. The mechanism of this promotional effect is mediated by the prolactin signaling pathway in mammary gland.

12.
Phytomedicine ; 85: 153544, 2021 May.
Article in English | MEDLINE | ID: mdl-33773192

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with few therapeutic options available currently. Traditional Chinese Medicine (TCM) has been practiced for thousands of years in China and Asian countries, and regarded as an important source for identifying novel medicines for diseases. Si Miao Formula (SMF) is a classical TCM formula for the treatment of gout disease by reducing serum uric acid concentrations, while high concentration of uric acid is also an independent risk factor for NAFLD. PURPOSE: To investigate the protective effect of SMF on NAFLD in a mouse model induced by a high fat/high sucrose (HFHS) diet. METHODS: Mice received a HFHS diet over a 16-week period to induce NAFLD with or without SMF intervention. Lipid levels were measured in both the liver and serum. Histopathological staining was used to evaluate the extent of hepatic lipid accumulation. Liver transcriptomics was used to enrich differentially expressed genes and to predict regulatory pathways after gene set enrichment analysis. 16S rRNA gene sequencing was used to determine the microbial composition. Genes of liver lipid metabolism, inflammation and intestinal tight junctions were detected by qRT-PCR analysis. RESULTS: SMF attenuated hepatic steatosis, reduced body weight gain and lipid concentrations, improved sensitivity to insulin and also tolerance to glucose, in mice fed an HFHS diet. Hepatic transcriptomics showed that SMF downregulated the biosynthesis of fatty acids and stimulated the insulin secretion pathway. SMF significantly altered the gut microbiota composition and in particular increased the proportion of Akkermansia muciniphila. In agreement with liver transcriptomics, SMF downregulated the expression of genes implicated in the metabolism of lipids (Acly, Fas, Acc, Scd-1) and pro-inflammatory cytokines (Il-1ß, Nlrp-3) in the livers. CONCLUSION: The results indicate that SMF attenuates HFHS diet-induced NAFLD and regulates hepatic lipid metabolism pathways. The anti-NAFLD effect of SMF was linked to modulation of the gut microbiota composition and in particular an increased relative abundance of Akkermansia muciniphila.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Diet, High-Fat , Inflammation/metabolism , Insulin/metabolism , Insulin Resistance , Intestines/drug effects , Lipids/blood , Liver/drug effects , Male , Medicine, Chinese Traditional , Mice , Mice, Inbred C57BL , Plant Extracts/therapeutic use , RNA, Ribosomal, 16S , Tight Junctions , Uric Acid/metabolism , Weight Gain
13.
Food Chem Toxicol ; 149: 112032, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33529680

ABSTRACT

Coreopsis tinctoria is commonly called Kunlun Chrysanthemum and a plateau plant with tremendous commercial value in functional tea and medicinal applications. In folk medicine, Kunlun Chrysanthemum flower is often used as an adjunctive therapy for diabetes and Alzheimer's disease. To further explore the chemicals responsible for the health benefits of Kunlun Chrysanthemum flowers, three homogeneous oligosaccharides, CT70-1A, CT70-1B and CT70-2 were isolated, and their detailed structures were determined from chemical and spectral analyses. The three oligosaccharides were composed of glucose, mannose, galactose, and arabinose in different ratios. They showed dose-dependent α-amylase and α-glucosidase inhibitory effects. In addition, they showed NO production inhibitory activities in BV2 cells, with IC50 values of 0.23, 0.24 and 0.27 mM, respectively. Taken together, these results suggested that Kunlun Chrysanthemum oligosaccharides might ameliorate hyperglycemia and neuroinflammation, which could prevent the development of diseases such as type 2 diabetes and Alzheimer's disease. This study provides chemical and bioactive perspectives that support the consumption of Kunlun Chrysanthemum flower tea for health benefits.


Subject(s)
Beverages/analysis , Chrysanthemum/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Animals , Cell Line , Glycoside Hydrolase Inhibitors/pharmacology , Mice , Microglia , Nitric Oxide , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
14.
J Ethnopharmacol ; 270: 113787, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33422657

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Weining granule (WNG) is a "Qi-Enriching and Kidney-Tonifying, Spleen-Reinforcing and Stasis-Removing" formula for gastric cancer (GC). Past research we noted WNG inhibited cell growth and raised apoptosis in GC. However, the underlying mechanism of WNG for GC have yet to be systematically clarified. AIM OF THE STUDY: We sought to characterize the molecular landscape of GC cells in vitro after WNG treated, to identify the molecular targets and pathways that were associated with WNG for inducing the apoptosis of GC cells, and further to clarify underlying molecular mechanism of WNG for GC. MATERIALS AND METHODS: We performed the techniques of RNA sequencing, tandem mass tags (TMT) based quantitative proteomics, and reduced representation bisulfite sequencing (RRBS) in WNG-treated/or untreated SGC-7901 GC cells to gain a comprehensive molecular portrait of WNG treatment. Then we integrated methylomics, transcriptomics, and proteomics data to carry out the bioinformatics analysis, and constructed the protein-protein interaction (PPI) network to identify molecular targets, and to discover the underlying signaling pathways associated with WNG for GC by network analysis. Besides, we verified the candidate target genes by Kaplan-Meier plotter database. RESULTS: We identified 1249 significant differentially expressed genes (DEGs) from RNA expression datasets, 191 significant differentially abunabundant proteins (DAPs) from proteomics datasets, and 8293 significant differentially methylated regions (DMRs) from DNA methylation datasets. GO and KEGG analysis showed DEGs, DAPs, and DMRs enriched in the cancer-related biological processes of calcium signaling pathway, pathways in cancer, metabolic pathways, MAPK signaling pathway, PI3K-Akt signaling pathway, and transcriptional misregulation in cancer. We integrated three profile datasets and performed network analysis to distinguish the hub genes, and finally the genes of SOD2, HMOX1, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, POLR2F, and HSPA9 were identified. The Kaplan-Meier plotter confirmed that SOD2, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, and HSPA9 were significantly correlated with OS in GC patients (P < 0.01), while HMOX1 and POLR2F expression were not significantly relevant to survival of GC patients (P > 0.01). CONCLUSIONS: SOD2, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, and HSPA9 were the predictive pharmaceutical targets of WNG for GC. The anticancer function of WNG was significantly associated with the pathways of focal adhesion pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and Wnt signaling pathway.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Proteome/drug effects , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transcriptome/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Computational Biology/methods , DNA Methylation/drug effects , Databases, Factual , Drugs, Chinese Herbal/chemistry , Epigenesis, Genetic , Epigenomics , Focal Adhesions/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kaplan-Meier Estimate , MAP Kinase Signaling System/drug effects , Oncogene Protein v-akt/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Protein Interaction Maps/drug effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Wnt Signaling Pathway/drug effects
15.
Article in English | MEDLINE | ID: mdl-35003304

ABSTRACT

BACKGROUND: Panax notoginseng saponins (PNS) have been used for neurodegenerative disorders such as cerebral ischemia and Alzheimer's disease (AD). Although increasing evidences show the neuron protective effects of PNS, the vital compounds and their functional targets remain elusive. To explore the potential functional ingredients of PNS for the AD treatment and their molecular mechanisms, an in vitro neuron injured model induced by Aß was investigated, and the potential mechanism was predicted by network pharmacology approach and validated by molecular biology methods. METHODS: Network pharmacology approach was used to reveal the relationship between ingredient-target disease and function-pathway of PNS on the treatment of AD. The active ingredients of PNS were collected from TCMSP, PubChem database, and literature mining in PubMed database. DrugBank and GeneCards database were used to predict potential targets for AD. The STRING database was performed to reveal enrichment of these target proteins, protein-protein interactions, and related pathways. Networks were visualized by utilizing Cytoscape software. The enrichment analysis was performed by the DAVID database. Finally, neuroprotective effect and predictive mechanism of PNS were investigated in an in vitro AD model established by Aß 25-35-treated PC12 cells. RESULTS: An ingredient-target disease and function-pathway network demonstrated that 38 active ingredients were derived from PNS modulated 364 common targets shared by PNS and AD. GO and KEGG analysis, further clustering analysis, showed that mTOR signaling targets were associated with the neuroprotective effects of PNS. In Aß-treated PC12 cells, PNS treatment improved neuroprotective effect, including mTOR inhibition and autophagy activation. CONCLUSIONS: Collectively, the protective effects of PNS on AD-neuron injury are related to the inhibition of mTOR and autophagy activation.

16.
J Ethnopharmacol ; 265: 113385, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32920133

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Qiwei Putao powder (Uzhumu-7 in Mongolian) is a traditional Mongolian medicine, which has been widely used for alleviating cough and dyspnea, especially in aged individuals in both Inner Mongolia Autonomous Region and Xinjiang Uygur Autonomous Region of China. However, the active ingredients and exact pharmacological mechanism remain unclear. MATERIALS AND METHODS: The protective effect of Qiwei Putao powder (QPP) on mice with cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced chronic obstructive pulmonary disease (COPD) was assessed by histopathological hematoxylin and eosin staining, lung coefficient determination and measurement of cytokine levels. The bioactive ingredients and potential targets of the QPP were screened and detected with network pharmacology method and ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). The mechanism and efficacy of active ingredients were further validated in COPD mice with immunohistochemistry tests, cytokine level measurement and RT-PCR. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) in the nucleus, interleukin (IL)-1ß, superoxide dismutase (SOD), malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA) kits to evaluate oxidative stress and inflammatory conditions in vivo after treatment. The expression of Nrf2 and downstream genes was detected by RT-PCR. RESULTS: QPP can alleviate pathological changes in the lung during COPD progression. Sixty-one bioactive molecules were identified in QPP, 42 candidate compounds present in UPLC-Q/TOF-MS and 30 predicted COPD-related targets were generated by in silico analysis. A therapeutic network was constructed with all potential targets to predict the preventive effects of the targets on respiratory disease as well as cardiovascular diseases, nervous system diseases, musculoskeletal diseases and bacterial infections. Targets related to inflammation, immunity and oxidative stress (prostaglandin-endoperoxide synthase 2, PTGS2; Nrf2; heat shock protein 90 alpha class A1, HSP90AA1; nitric oxide synthase, NOS2A; etc.) influenced COPD progression the most. We found that Nrf2 promotes a cell antioxidant response and is a key common target in the response to treatment with isoliquiritigenin (ISL), pterostilbene (PTE) and quercetin (QUE), the highly absorbed active ingredients in the formula. The data showed a strong synergistic protective role of these three molecules against the death of human type II alveolar adenocarcinoma (A549) cells through Nrf2 activation following H2O2 exposure and provide pharmacological mechanism of QPP in COPD treatment.


Subject(s)
Medicine, Mongolian Traditional , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Pulmonary Disease, Chronic Obstructive/drug therapy , A549 Cells , Animals , Antioxidants/metabolism , Disease Models, Animal , Humans , Lipopolysaccharides , Lung/drug effects , Lung/pathology , Male , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Pulmonary Disease, Chronic Obstructive/physiopathology , Smoke/adverse effects
17.
Phytomedicine ; 80: 153399, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33202325

ABSTRACT

BACKGROUND: Pristimerin, a natural quinonemethid triterpenoid found in different spp. of Celastraceae and Hippocrateaceae families, has been reported to exhibit potent antitumor activities against colorectal cancer (CRC). However, the mechanisms underlying pristimerin-induced apoptosis in CRC is not clear. PURPOSE: This study aimed to investigate the mechanisms of pristimerin-induced apoptosis against CRC in vitro and in vivo. METHODS: Cell viability and cell apoptosis analyses were conducted to assess the effects of pristimerin on CRC. Western blotting was performed to detect the expression of proteins affected by pristimerin in vitro and in vivo. HCT116 colon cancer xenografts and APCmin/+ mouse models were used to evaluate the anti-CRC effect of pristimerin in vivo. RESULTS: Our data showed that pristimerin induced apoptosis by regulating proapoptotic proteins of which Noxa showed higher expression. Pristimerin triggered reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress signaling activation. Pristimerin significantly elevated the expression of ER stress-related proteins, resulting in activation of the IRE1α and c-Jun N-terminal kinase (JNK) signal pathway through the formation of the IRE1α-TRAF2-ASK1 complex. Pristimerin exhibited apoptosis-inducing activities in HCT116 colon cancer xenografts and APCmin/+ mice. CONCLUSION: Both in vitro and in vivo data demonstrated that pristimerin induced Noxa expression and apoptosis through activation of the ROS/ER stress/JNK axis in CRC. Thus, pristimerin may be a promising antitumor agent for CRC.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Colorectal Neoplasms/drug therapy , Endoplasmic Reticulum Stress/drug effects , Reactive Oxygen Species/metabolism , Triterpenes/pharmacology , Adenomatous Polyposis Coli Protein/genetics , Animals , Apoptosis/drug effects , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Endoribonucleases/genetics , Endoribonucleases/metabolism , Female , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice, Inbred BALB C , Pentacyclic Triterpenes , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , TNF Receptor-Associated Factor 2/metabolism , Xenograft Model Antitumor Assays
18.
BMC Complement Med Ther ; 20(1): 286, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32957919

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) play vital roles in acute inflammatory and antiviral responses during influenza A virus (IAV) infection. The Xijiao Dihuang decoction combined with Yinqiao powder (XDY) is applied to remedy viral pneumonia in China and its therapeutic efficacy in pneumonic mice challenged with IAV was demonstrated; however, the underlying mechanisms remain elusive. Thus, this study aimed to explore the miRNA-mRNA profiles in the lungs of IAV-infected mice and investigate the therapeutic mechanisms of XDY involving miRNAs and associated pathways. METHODS: We detected the cellular miRNA contents in the lungs of mice treated with XDY (23 g/kg/d) for A/FM/1/47 (H1N1) (FM1) infection at 4 days postinoculation (dpi) and 7 dpi. MiRNA and mRNA high-throughput sequencing analyses, and miRNA and mRNA qRT-PCR analyses were used to detect and verify the relevant miRNAs and mRNAs. Conjoint analysis, GO enrichment analysis, and KEGG database analysis were applied to identify the miRNA-mRNA regulatory relationships. RESULTS: The quantities of differentially expressed miRNAs and mRNAs were upregulated over time. The data showed that 104 miRNAs and 3485 mRNAs were differentially expressed after challenge with FM1 on day 4, while 191 miRNAs and 6126 mRNAs were differentially expressed on day 7. The GO enrichment analysis and KEGG database data showed that the differentially expressed miRNAs and mRNAs were mainly enriched in JNK activity, MAPK phosphatase activity, and the TLR, Jak-STAT and TNF signalling pathways after treatment of FM1 infection with XDY. Generally, the expression trends of differentially expressed miRNAs and mRNAs based on the qRT-PCR results exhibited good consistency with the results of the high-throughput sequencing analysis. CONCLUSIONS: MiRNAs and mRNAs were differentially expressed during FM1 infection. The therapeutic mechanisms of XDY in FM1-infected mice, might be related to regulating antiviral immunity and ameliorating excessive inflammatory responses by modulating the expression of dysregulated miRNAs and mRNAs involved in the ERK/JNK-AP-1, and IFN-ß/STAT signalling pathways.


Subject(s)
Drugs, Chinese Herbal/pharmacology , MicroRNAs/metabolism , Orthomyxoviridae Infections/drug therapy , RNA, Messenger/metabolism , Animals , Disease Models, Animal , Gene Ontology , Male , Mice , Mice, Inbred BALB C , Powders
19.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3726-3739, 2020 Aug.
Article in Chinese | MEDLINE | ID: mdl-32893565

ABSTRACT

This study is to explore the effect of Qingfei Paidu Decoction(QPD) on the host metabolism and gut microbiome of rats with metabolomics and 16 S rDNA sequencing. Based on 16 S rDNA sequencing of gut microbiome and metabolomics(GC-MS and LC-MS/MS), we systematically studied the serum metabolites profile and gut microbiota composition of rats treated with QPD for continued 5 days by oral gavage. A total of 23 and 43 differential metabolites were identified based on QPD with GC-MS and LC-MS/MS, respectively. The involved metabolic pathways of these differential metabolites included glycerophospholipid metabolism, linoleic acid metabolism, TCA cycle and pyruvate metabolism. Meanwhile, we found that QPD significantly regulated the composition of gut microbiota in rats, such as enriched Romboutsia, Turicibacter, and Clostridium_sensu_stricto_1, and decreased norank_f_Lachnospiraceae. Our current study indicated that short-term intervention of QPD could significantly regulate the host metabolism and gut microbiota composition of rats dose-dependently, suggesting that the clinical efficacy of QPD may be related with the regulation on host metabolism and gut microbiome.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Bacteria/classification , Chromatography, Liquid , Metabolomics , Rats , Tandem Mass Spectrometry
20.
Sci Adv ; 6(33): eaba3546, 2020 08.
Article in English | MEDLINE | ID: mdl-32851163

ABSTRACT

We discovered that attenuated Salmonella after intravenous injection would proliferate within various types of solid tumors but show rapid clearance in normal organs, without rendering notable toxicity. Bacteria-induced inflammation would trigger thrombosis in the infected tumors by destroying tumor blood vessels. Six types of tested tumors would all turn into darkened color with strong near-infrared absorbance, as observed by photoacoustic imaging. Under laser irradiation, those bacterial-infected tumors would be effectively ablated. Because of the immune-stimulation function, such bacteria-based photothermal therapy (PTT) would subsequently trigger antitumor immune responses, which could be further enhanced by immune checkpoint blockade to effectively suppress the growth of abscopal tumors. A robust immune memory effect to reject rechallenged tumors is also observed after bacteria-based PTT. Our work demonstrates that bacteria by themselves could act as a tumor-specific PTT agent to enable photoimmunotherapy cancer therapy to inhibit tumor metastasis and recurrence.


Subject(s)
Neoplasms , Thrombosis , Bacteria , Cell Line, Tumor , Humans , Immunologic Factors , Immunotherapy/methods , Neoplasms/therapy , Phototherapy , Thrombosis/etiology , Thrombosis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL