Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Acta Pharmacol Sin ; 44(1): 145-156, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35655096

ABSTRACT

Propolis is commonly used in traditional Chinese medicine. Studies have demonstrated the therapeutic effects of propolis extracts and its major bioactive compound caffeic acid phenethyl ester (CAPE) on obesity and diabetes. Herein, CAPE was found to have pharmacological activity against nonalcoholic fatty liver disease (NAFLD) in diet-induced obese mice. CAPE, previously reported as an inhibitor of bacterial bile salt hydrolase (BSH), inhibited BSH enzymatic activity in the gut microbiota when administered to mice. Upon BSH inhibition by CAPE, levels of tauro-ß-muricholic acid were increased in the intestine and selectively suppressed intestinal farnesoid X receptor (FXR) signaling. This resulted in lowering of the ceramides in the intestine that resulted from increased diet-induced obesity. Elevated intestinal ceramides are transported to the liver where they promoted fat production. Lowering FXR signaling was also accompanied by increased GLP-1 secretion. In support of this pathway, the therapeutic effects of CAPE on NAFLD were absent in intestinal FXR-deficient mice, and supplementation of mice with C16-ceramide significantly exacerbated hepatic steatosis. Treatment of mice with an antibiotic cocktail to deplete BSH-producing bacteria also abrogated the therapeutic activity of CAPE against NAFLD. These findings demonstrate that CAPE ameliorates obesity-related steatosis at least partly through the gut microbiota-bile acid-FXR pathway via inhibiting bacterial BSH activity and suggests that propolis enriched with CAPE might serve as a promising therapeutic agent for the treatment of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Propolis , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Propolis/metabolism , Propolis/pharmacology , Propolis/therapeutic use , Intestines , Liver/metabolism , Obesity/drug therapy , Bacteria/metabolism , Ceramides/metabolism , Bile Acids and Salts/metabolism , Mice, Inbred C57BL
2.
Microbiome ; 10(1): 226, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36517893

ABSTRACT

OBJECTIVE: High intake of caffeoylquinic acid (CQA)-rich dietary supplements, such as green coffee bean extracts, offers health-promoting effects on maintaining metabolic homeostasis. Similar to many active herbal ingredients with high pharmacological activities but low bioavailability, CQA has been reported as a promising thermogenic agent with anti-obesity properties, which contrasts with its poor oral absorption. Intestinal tract is the first site of CQA exposure and gut microbes might react quickly to CQA. Thus, it is of interest to explore the role of gut microbiome and microbial metabolites in the beneficial effects of CQA on obesity-related disorders. RESULTS: Oral CQA supplementation effectively enhanced energy expenditure by activating browning of adipose and thus ameliorated obesity-related metabolic dysfunctions in high fat diet-induced obese (DIO) mice. Here, 16S rRNA gene amplicon sequencing revealed that CQA treatment remodeled the gut microbiota to promote its anti-obesity actions, as confirmed by antibiotic treatment and fecal microbiota transplantation. CQA enriched the gut commensal species Limosilactobacillus reuteri (L. reuteri) and stimulated the production of short-chain fatty acids, especially propionate. Mono-colonization of L. reuteri or low-dose CQA treatment did not reduce adiposity in DIO mice, while their combination elicited an enhanced thermogenic response, indicating the synergistic effects of CQA and L. reuteri on obesity. Exogenous propionate supplementation mimicked the anti-obesity effects of CQA alone or when combined with L. reuteri, which was ablated by the monocarboxylate transporter (MCT) inhibitor 7ACC1 or MCT1 disruption in inguinal white adipose tissues to block propionate transport. CONCLUSIONS: Our data demonstrate a functional axis among L. reuteri, propionate, and beige fat tissue in the anti-obesity action of CQA through the regulation of thermogenesis. These findings provide mechanistic insights into the therapeutic use of herbal ingredients with poor bioavailability via their interaction with the gut microbiota. Video Abstract.


Subject(s)
Adiposity , Limosilactobacillus reuteri , Mice , Animals , RNA, Ribosomal, 16S/metabolism , Propionates , Obesity/complications , Diet, High-Fat , Mice, Inbred C57BL
3.
Molecules ; 26(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34361604

ABSTRACT

A novel homogeneous polysaccharide named GEP-1 was isolated and purified from Gastrodia elata (G. elata) by hot-water extraction, ethanol precipitation, and membrane separator. GEP-1, which has a molecular weight of 20.1 kDa, contains a polysaccharide framework comprised of only glucose. Methylation and NMR analysis showed that GEP-1 contained 1,3,6-linked-α-Glcp, 1,4-linked-α-Glcp, 1,4-linked-ß-Glcp and 1,4,6-linked-α-Glcp. Interestingly, GEP-1 contained citric acid and repeating p-hydroxybenzyl alcohol as one branch. Furthermore, a bioactivity test showed that GEP-1 could significantly promote the growth of Akkermansia muciniphila (A. muciniphila) and Lacticaseibacillus paracasei (L.paracasei) strains. These results implied that GEP-1 might be useful for human by modulating gut microbiota.


Subject(s)
Gastrodia/chemistry , Gastrointestinal Microbiome/drug effects , Plant Extracts/chemistry , Polysaccharides/pharmacology , Akkermansia/drug effects , Carbohydrates , Dietary Carbohydrates
4.
Int J Biol Macromol ; 186: 501-509, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34271043

ABSTRACT

Two homogeneous polysaccharides, GEP-3 and GEP-4, were purified from Gastrodia elata, a precious traditional Chinese medicine. Their structural characteristics were obtained using HPGPC, PMP-HPLC, LC/MS, FT-IR, NMR, and SEM methods. GEP-3 was 1,4-glucan with molecular weight of 20 kDa. Interestingly, GEP-4 comprised of a backbone of →[4)-α-Glcp-(1]10→[4)-α-Glcp-(1→]5[6)-ß-Glcp-(1]11→6)-α-Glcp-(3→ and two branches of ß-Glcp and p-hydroxybenzyl alcohol citrate, with repeating p-hydroxybenzyl alcohol attached to the backbone chain at O-6 position of →4,6)-α-Glcp-(1→ and O-1 position of →3,6)-α-Glcp-(1→. GEP-4 is a novel polysaccharide obtained and characterized for the first time. Bioactivity test indicated that both of them significantly promote the growth of Akkermansia muciniphila (Akk. muciniphila). Furthermore, GEP-3 and GEP-4 promoted the growth of Akk. muciniphila from high-fat diet (HFD) fecal microbiota. These results indicated that GEP-3 and GEP-4 were potential Akk. muciniphila growth promoters.


Subject(s)
Gastrodia , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Akkermansia/drug effects , Akkermansia/growth & development , Akkermansia/isolation & purification , Animals , Diet, High-Fat , Disease Models, Animal , Feces/microbiology , Gastrodia/chemistry , Gastrointestinal Microbiome , Mice , Molecular Structure , Non-alcoholic Fatty Liver Disease/microbiology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL