Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 240: 124353, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37059281

ABSTRACT

Theaflavins (TFs) are important quality compounds in black tea with a variety of biological activities. However, direct extraction of TFs from black tea is inefficient and costly. Therefore, we cloned two PPO isozymes from Huangjinya tea, termed HjyPPO1 and HjyPPO3. Both isozymes oxidized corresponding catechin substrates for the formation of four TFs (TF1, TF2A, TF2B, TF3), and the optimal catechol-type catechin to pyrogallol-type catechin oxidation rate of both isozymes was 1:2. In particular, the oxidation efficiency of HjyPPO3 was higher than that of HjyPPO1. The optimum pH and temperature of HjyPPO1 were 6.0 and 35 °C, respectively, while those of HjyPPO3 were 5.5 and 30 °C, respectively. Molecular docking simulation indicated that the unique residue of HjyPPO3 at Phe260 was more positive and formed a π-π stacked structure with His108 to stabilize the active region. In addition, the active catalytic cavity of HjyPPO3 was more conducive for substrate binding by extensive hydrogen bonding.


Subject(s)
Camellia sinensis , Catechin , Camellia sinensis/chemistry , Catechin/chemistry , Catechol Oxidase/metabolism , Isoenzymes , Molecular Docking Simulation , Antioxidants , Tea/genetics , Tea/chemistry , Cloning, Molecular
2.
J Plant Physiol ; 280: 153894, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36525836

ABSTRACT

Mahonia bealei and Mahonia fortunei are important plant resources in Traditional Chinese Medicine that are valued for their high levels of benzylisoquinoline alkaloids (BIAs). Although the phytotoxic activity of BIAs has been recognized, information is limited on the mechanism of action by which these compounds regulate photosynthetic activity. Here, we performed comparative chloroplast genome analysis to examine insertions and deletions in the two species. We found a GATA-motif located in the promoter region of the ndhF gene of only M. bealei. K-mer frequency-based diversity analysis illustrated the close correlation between the GATA-motif and leaf phenotype. We found that the GATA-motif significantly inhibits GUS gene expression in tobacco during the dark-light transition (DLT). The expression of ndhF was downregulated in M. bealei and upregulated in M. fortunei during the DLT. NDH-F activity was remarkably decreased and exhibited a significant negative correlation with BIA levels in M. bealei during the DLT. Furthermore, the NADPH produced through photosynthetic metabolism was found to decrease in M. bealei during the DLT. Taken together, our results indicate that this GATA-motif might act as the functional site by which BIAs inhibit photosynthetic metabolism through downregulating ndhF expression during the DLT.


Subject(s)
Alkaloids , Benzylisoquinolines , Mahonia , Mahonia/chemistry , Plant Extracts/pharmacology , Chloroplasts
3.
Front Plant Sci ; 13: 1092857, 2022.
Article in English | MEDLINE | ID: mdl-36618608

ABSTRACT

Lonicera japonica is not only an important resource of traditional Chinese medicine, but also has very high horticultural value. Studies have been performed on the physiological responses of L. japonica leaves to chilling, however, the molecular mechanism underlying the low temperature-induced leaves morphological changes remains unclear. In this study, it has been demonstrated that the ratio of pigments content including anthocyanins, chlorophylls, and carotenoids was significantly altered in response to chilling condition, resulting in the color transformation of leaves from green to purple. Transcriptomic analysis showed there were 10,329 differentially expressed genes (DEGs) co-expressed during chilling stress. DEGs were mainly mapped to secondary metabolism, cell wall, and minor carbohydrate. The upregulated genes (UGs) were mainly enriched in protein metabolism, transport, and signaling, while UGs in secondary metabolism were mainly involved in phenylpropaoids-flavonoids pathway (PFP) and carotenoids pathway (CP). Protein-protein interaction analysis illustrated that 21 interacted genes including CAX3, NHX2, ACA8, and ACA9 were enriched in calcium transport/potassium ion transport. BR biosynthesis pathway related genes and BR insensitive (BRI) were collectively induced by chilling stress. Furthermore, the expression of genes involved in anthocyanins and CPs as well as the content of chlorogenic acid (CGA) and luteoloside were increased in leaves of L. japonica under stress. Taken together, these results indicate that the activation of PFP and CP in leaves of L. japonica under chilling stress, largely attributed to the elevation of calcium homeostasis and stimulation of BR signaling, which then regulated the PFP/CP related transcription factors.

4.
Front Plant Sci ; 12: 794906, 2021.
Article in English | MEDLINE | ID: mdl-35087555

ABSTRACT

Mahonia bealei (M. bealei) is a traditional Chinese medicine containing a high alkaloid content used to treat various diseases. Generally, only dried root and stem are used as medicines, considering that the alkaloid content in M. bealei leaves is lower than in the stems and roots. Some previous research found that alkaloid and flavonoid contents in the M. bealei leaves may increase when exposed to ultraviolet B (UV-B) radiation. However, the underlying mechanism of action is still unclear. In this study, we used titanium dioxide material enrichment and mass-based label-free quantitative proteomics techniques to explore the effect and mechanism of M. bealei leaves when exposed to UV-B treatment. Our data suggest that UV-B radiation increases the ATP content, photosynthetic pigment content, and some enzymatic/nonenzymatic indicators in the leaves of M. bealei. Moreover, phosphoproteomics suggests phosphoproteins related to mitogen-activated protein kinase (MAPK) signal transduction and the plant hormone brassinosteroid signaling pathway as well as phosphoproteins related to photosynthesis, glycolysis, the tricarboxylic acid cycle, and the amino acid synthesis/metabolism pathway are all affected by UV-B radiation. These results suggest that the UV-B radiation activates the oxidative stress response, MAPK signal transduction pathway, and photosynthetic energy metabolism pathway, which may lead to the accumulation of secondary metabolites in M. bealei leaves.

5.
J Proteomics ; 208: 103470, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31374363

ABSTRACT

Lonicera japonica Thunb. is an important medicinal plant. The secondary metabolites in L. japonica are diverse and vary in levels during development, leading to the ambiguous evaluation for its medical value. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Further proteomic analysis revealed that uniquely identified proteins were mainly involved in glycolysis/phenylpropanoids and tricarboxylic acid cycle/terpenoid backbone pathways in early and late stages, respectively. Transketolase was commonly identified in the 5 developmental stages and 2-fold increase in gold flowering stage compared with juvenile bud stage. Simple phenylpropanoids/flavonoids and 1-deoxy-D-xylulose-5-phosphate were accumulated in early stages and upregulated in late stages, respectively. These results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development. BIOLOGICAL SIGNIFICANCE: Lonicera japonica Thunb. is a native species in the East Asian and used in traditional Chinese medicine. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Our results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development.


Subject(s)
Gene Expression Profiling , Lonicera , Metabolome , Metabolomics , Proteomics , Flowers/genetics , Flowers/metabolism , Lonicera/genetics , Lonicera/metabolism
6.
J Proteome Res ; 18(9): 3328-3341, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31356092

ABSTRACT

Ultraviolet (UV)-B radiation acts as an elicitor to enhance the production of secondary metabolites in medicinal plants. To investigate the mechanisms, which lead to secondary metabolites in Catharanthus roseus under UVB radiation, a phosphoproteomic technique was used. ATP content increased in the leaves of C. roseus under UVB radiation. Phosphoproteins related to calcium such as calmodulin, calcium-dependent kinase, and heat shock proteins increased. Phosphoproteins related to protein synthesis/modification/degradation and signaling intensively changed. Metabolomic analysis indicated that the metabolites classified with pentoses, aromatic amino acids, and phenylpropanoids accumulated under UVB radiation. Phosphoproteomic and immunoblot analyses indicated that proteins related to glycolysis and the reactive-oxygen species scavenging system were changed under UVB radiation. These results suggest that UVB radiation activates the calcium-related pathway and reactive-oxygen species scavenging system in C. roseus. These changes lead to the upregulation of proteins, which are responsible for the redox reactions in secondary metabolism and are important for the accumulation of secondary metabolites in C. roseus under UVB radiation.


Subject(s)
Catharanthus/metabolism , Phosphoproteins/genetics , Plant Proteins/metabolism , Secondary Metabolism/radiation effects , Calcium/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Catharanthus/genetics , Catharanthus/radiation effects , Phosphoproteins/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/radiation effects , Plant Roots/metabolism , Plant Roots/radiation effects , Plants, Medicinal/radiation effects , Secondary Metabolism/genetics , Signal Transduction/radiation effects , Ultraviolet Rays
7.
Int J Mol Sci ; 20(2)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654535

ABSTRACT

Morus alba is an important medicinal plant that is used to treat human diseases. The leaf, branch, and root of Morus can be applied as antidiabetic, antioxidant, and anti-inflammatory medicines, respectively. To explore the molecular mechanisms underlying the various pharmacological functions within different parts of Morus, organ-specific proteomics were performed. Protein profiles of the Morus leaf, branch, and root were determined using a gel-free/label-free proteomic technique. In the Morus leaf, branch, and root, a total of 492, 414, and 355 proteins were identified, respectively, including 84 common proteins. In leaf, the main function was related to protein degradation, photosynthesis, and redox ascorbate/glutathione metabolism. In branch, the main function was related to protein synthesis/degradation, stress, and redox ascorbate/glutathione metabolism. In root, the main function was related to protein synthesis/degradation, stress, and cell wall. Additionally, organ-specific metabolites and antioxidant activities were analyzed. These results revealed that flavonoids were highly accumulated in Morus root compared with the branch and leaf. Accordingly, two root-specific proteins named chalcone flavanone isomerase and flavonoid 3,5-hydroxylase were accumulated in the flavonoid pathway. Consistent with this finding, the content of the total flavonoids was higher in root compared to those detected in branch and leaf. These results suggest that the flavonoids in Morus root might be responsible for its biological activity and the root is the main part for flavonoid biosynthesis in Morus.


Subject(s)
Morus/metabolism , Organ Specificity , Proteomics/methods , Staining and Labeling , Antioxidants/metabolism , Citric Acid Cycle , Flavonoids/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Glycolysis , Metabolome , Morus/genetics , Organ Specificity/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Secondary Metabolism
8.
Plant Cell Physiol ; 59(11): 2214-2227, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30020500

ABSTRACT

Pharmaceutically active compounds from medical plants are attractive as a major source for new drug development. Prenylated stilbenoids with increased lipophilicity are valuable secondary metabolites which possess a wide range of biological activities. So far, many prenylated stilbenoids have been isolated from Morus alba but the enzyme responsible for the crucial prenyl modification remains unknown. In the present study, a stilbenoid-specific prenyltransferase (PT), termed Morus alba oxyresveratrol geranyltransferase (MaOGT), was identified and functionally characterized in vitro. MaOGT recognized oxyresveratrol and geranyl diphosphate (GPP) as natural substrates, and catalyzed oxyresveratrol prenylation. Our results indicated that MaOGT shared common features with other aromatic PTs, e.g. multiple transmembrane regions, conserved functional domains and targeting to plant plastids. This distinct PT represents the first stilbenoid-specific PT accepting GPP as a natural prenyl donor, and could help identify additional functionally varied PTs in moraceous plants. Furthermore, MaOGT might be applied for high-efficiency and large-scale prenylation of oxyresveratrol to produce bioactive compounds for potential therapeutic applications.


Subject(s)
Dimethylallyltranstransferase/metabolism , Diphosphates/metabolism , Diterpenes/metabolism , Morus/enzymology , Stilbenes/metabolism , Catalysis , Dimethylallyltranstransferase/genetics , Morus/genetics , Morus/metabolism , Organisms, Genetically Modified , Phylogeny , Plant Extracts/metabolism , Plant Leaves/enzymology , Plant Leaves/metabolism , Plants, Genetically Modified , Prenylation , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Sequence Alignment , Substrate Specificity , Nicotiana
SELECTION OF CITATIONS
SEARCH DETAIL