Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
Clin Transl Med ; 12(9): e1025, 2022 09.
Article in English | MEDLINE | ID: mdl-36103567

ABSTRACT

BACKGROUND: Patients with COVID-19 display a broad spectrum of manifestations from asymptomatic to life-threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive. METHODS: We investigated a total of 137 APs infected with SARS-CoV-2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD-, S1-, SSA/Ro- and dsDNA-specific IgG. RESULTS: While critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection-induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID-19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease. CONCLUSION: Our results reveal an immune mechanism that controls SARS-CoV-2-induced detrimental B cell responses and COVID-19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.


Subject(s)
COVID-19 , Viral Vaccines , B-Lymphocytes , COVID-19 Vaccines , Cytokines , Humans , Mitochondria , SARS-CoV-2 , Severity of Illness Index , Viral Vaccines/pharmacology
2.
Fitoterapia ; 157: 105107, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34952142

ABSTRACT

Three novel norsesquiterpenoids, (2R,4S,8aR)-8,8a,1,2,3,4-hexahydro-2-hydroxy-4,8a-dimethyl-2(2H)-naphthalenone (1), (1S,3S,4S,4aS,8aR)-4,8a-dimethyloctahydronaphthalene-1,3,4a(3H)-triol(2), (4S,4aS,8aS)-octahydro-4a-hydroxy-4, 8a-dimethyl-1(2H)-naphthalenone (3), as well as six other known analogues (4-9), were isolated from the culture broth of Streptomyces sp. XM17, an actinobacterial strain inhabiting the fresh feces of the giant panda Ailuropoda melanoleuca. The chemical structures of 1-3 were elucidated comprehensively by NMR spectroscopic and MS analyses, furthermore, the stereochemical configurations were resolved by NOESY experiments, along with ECD spectral and single-crystal X-ray crystallographic analyses. These compounds were then tested for their antiviral activities using the "pretreatment of virus" approach, which showed that most of these compounds were potent in inhibiting the entry of influenza A virus, with IC50 values ranging from 5 to 49 nM and selectivity indices all above 500.


Subject(s)
Antiviral Agents/isolation & purification , Feces/microbiology , Influenza A virus/drug effects , Sesquiterpenes/isolation & purification , Streptomyces/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Chick Embryo , Circular Dichroism , Crystallography, X-Ray , Dogs , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Magnetic Resonance Spectroscopy , Mass Spectrometry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/toxicity , Ursidae
3.
J Virol ; 92(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29263266

ABSTRACT

Although it has been shown that some mannose-binding lectins (MBLs) exhibit significant activity against HIV infection, little is known about whether N-acetylgalactosamine (GalNAc)-binding lectins have the ability to inhibit HIV infection. Here, we demonstrate that a soybean-derived lectin (SBL) with GalNAc-binding affinity could potently suppress HIV infection of macrophages in a dose-dependent fashion. Unlike the MBLs, which block HIV only through binding to the glycosylated envelope proteins (gp120 and gp41) of the virus, SBL inhibited HIV at multiple steps of the virus infection/replication cycle. SBL could activate the beta interferon (IFN-ß)-STAT signaling pathway, resulting in the upregulation of a number of antiviral interferon-stimulated genes (ISGs) in macrophages. In addition, SBL treatment of macrophages induced the production of C-C chemokines, which bind to HIV entry coreceptor CCR5. Deglycosylation of cell surface galactosyl moieties or presaturation of GalNAc-binding capacity could compromise SBL-mediated induction of the antiviral factors. Furthermore, SBL exerted its anti-HIV activity in the low nanomolar range with no mitogenic effect on CD4+ T cells, a major advantage in the development of SBL as a potential anti-HIV agent compared with MBLs. These data indicate a necessity to further investigate SBL as an alternative and cost-effective anti-HIV natural product.IMPORTANCE Mannose-binding lectins (MBLs) can block the attachment of HIV to target cells and have been suggested as anti-HIV microbicides. However, the mitogenic effect of MBLs on CD4+ T cells limits this potential in clinical settings. Lectins with galactose (Gal)- or N-acetylgalactosamine (GalNAc)-binding specificity are another important category of carbohydrate-binding proteins (CBP). Compared to high-mannose N-linked glycans, GalNAc-type glycans present much less in HIV gp120 or gp41 glycosylation. Here, we demonstrate that GalNAc-specific soybean lectin (SBL) triggers antiviral signaling via recognition of the cell surface galactosyl group of macrophages, which results in the suppression of HIV at multiple steps. More importantly, SBL has no mitogenic effect on the activation of CD4+ T cells, a major advantage in the development of Gal/GalNAc-specific lectins as naturopathic anti-HIV agents.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV-1/immunology , Macrophages/immunology , Plant Lectins/pharmacology , Soybean Proteins/pharmacology , Virus Internalization/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/immunology , HIV Infections/immunology , HIV Infections/pathology , HIV-1/pathogenicity , Humans , Interferon-beta/immunology , Macrophages/pathology , Macrophages/virology , Receptors, CCR5/immunology , STAT Transcription Factors/immunology , Signal Transduction/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL