Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Ultrason Sonochem ; 94: 106339, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36842214

ABSTRACT

The current work combines headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) with multivariate analysis fusion metabonomics for examining metabolite profile changes. The correlation with metabolic pathways during the fermentation of kombucha tea were comprehensively explored. For optimizing the fermentation process, ultrasound-assisted factors were explored. A total of 132 metabolites released by fermented kombucha were detected by HS-SPME-GC/MS. We employed the principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to present the relationship between aroma components and fermentation time, of which the first two principal components respectively accounted for 60.3% and 6.5% of the total variance. Multivariate statistical analysis showed that during the fermentation of kombucha tea, there were significant differences in the phenotypes of metabolites in the samples, and 25 characteristic metabolites were selected as biomarkers. Leaf alcohol was first proposed as the characteristic volatile in the fermentation process of kombucha. Furthermore, we addressed the generation pathways of characteristic volatiles, their formation mechanisms, and the transformational correlation among them. Our findings provide a roadmap for future kombucha fermentation processing to enhance kombucha flavor and aroma.


Subject(s)
Kombucha Tea , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Fermentation , Kombucha Tea/analysis , Odorants/analysis , Metabolomics , Ethanol/analysis , Metabolic Networks and Pathways , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL