Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 117(4): 999-1017, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009661

ABSTRACT

Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.


Subject(s)
Brassica napus , Multiomics , Humans , Brassica napus/genetics , Fatty Acids/metabolism , Plant Oils/metabolism , Triglycerides/metabolism , Seeds/metabolism
2.
Plant J ; 103(3): 1089-1102, 2020 08.
Article in English | MEDLINE | ID: mdl-32344461

ABSTRACT

Traditional genetic studies focus on identifying genetic variants associated with the mean difference in a quantitative trait. Because genetic variants also influence phenotypic variation via heterogeneity, we conducted a variance-heterogeneity genome-wide association study to examine the contribution of variance heterogeneity to oil-related quantitative traits. We identified 79 unique variance-controlling single nucleotide polymorphisms (vSNPs) from the sequences of 77 candidate variance-heterogeneity genes for 21 oil-related traits using the Levene test (P < 1.0 × 10-5 ). About 30% of the candidate genes encode enzymes that work in lipid metabolic pathways, most of which define clear expression variance quantitative trait loci. Of the vSNPs specifically associated with the genetic variance heterogeneity of oil concentration, 89% can be explained by additional linked mean-effects genetic variants. Furthermore, we demonstrated that gene × gene interactions play important roles in the formation of variance heterogeneity for fatty acid compositional traits. The interaction pattern was validated for one gene pair (GRMZM2G035341 and GRMZM2G152328) using yeast two-hybrid and bimolecular fluorescent complementation analyses. Our findings have implications for uncovering the genetic basis of hidden additive genetic effects and epistatic interaction effects, and we indicate opportunities to stabilize efficient breeding and selection of high-oil maize (Zea mays L.).


Subject(s)
Genetic Variation/genetics , Zea mays/genetics , Corn Oil/genetics , Corn Oil/metabolism , Epistasis, Genetic/genetics , Genes, Plant/genetics , Genes, Plant/physiology , Genetic Loci/genetics , Genome-Wide Association Study , Lipid Metabolism/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL