Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Aging (Albany NY) ; 16(1): 299-321, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38180752

ABSTRACT

Ischemic stroke (IS) is one of the principal causes of disability and death worldwide. Berberine (BBR), derived from the traditional Chinese herbal medicine Huang Lian, has been reported to inhibit the progression of stroke, but the specific mechanism whereby BBR modulates the progression of ischemic stroke remains unclear. N6-methyladenosine (m6A) modification is the most typical epigenetic modification of mRNA post-transcriptional modifications, among which METTL3 is the most common methylation transferase. During the study, the middle cerebral artery occlusion/reperfusion (MCAO/R) was established in mice, and the mice primary astrocytes and neurons induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was simulated in vitro. Level of LncNEAT1, miR-377-3p was detected via RT-qPCR. The levels of Nampt and METTL3 were measured by Western blot. CCK8 and LDH assay was performed to detect cell viability. Here, we found that berberine alleviates MCAO/R-induced ischemic injury and up-regulates the expression of Nampt in astrocytes, miR-377-3p inhibits the expression of Nampt in astrocytes after OGD/R, thus promoting neuronal injury. NEAT1 binds to miR-377-3p in OGD/R astrocytes and plays a neuronal protective role as a ceRNA. METTL3 can enhance NEAT1 stability in OGD/R astrocytes by modulating m6A modification of NEAT1. Taken together, our results demonstrate that berberine exerts neuroprotective effects via the m6A methyltransferase METTL3, which regulates the NEAT1/miR-377-3p/Nampt axis in mouse astrocytes to ameliorate cerebral ischemia/reperfusion (I/R) injury.


Subject(s)
Berberine , Ischemic Stroke , MicroRNAs , Reperfusion Injury , Mice , Animals , Ischemic Stroke/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Neuroprotection , Astrocytes/metabolism , MicroRNAs/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Reperfusion Injury/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Apoptosis/genetics , Glucose/metabolism
2.
Acta Pharmacol Sin ; 44(11): 2151-2168, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37420104

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 µM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aß generation by inhibiting the ß-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aß plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aß generation in early AD, which is a potential therapeutic intervention for early AD treatment.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neurodegenerative Diseases , Mice , Humans , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Mice, Transgenic , Retina/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
3.
Aging (Albany NY) ; 11(21): 9424-9441, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31697645

ABSTRACT

Mitochondrial dysfunction and oxidative damage are closely related to the pathogenesis of Parkinson's disease (PD). The pharmacological mechanism of protocatechuic aldehyde (PCA) for PD treatment have retained unclear. The purposes of the present study were to clarify the neuroprotective effects of post-treatment of PCA for PD treatment by mitigating mitochondrial dysfunction and oxidative damage, and to further determine whether its effects were mediated by the polo-like kinase 2/phosphorylated glycogen synthase kinase 3 ß/nuclear factor erythroid-2-related factor 2 (PLK2/p-GSK3ß/Nrf2) pathways. We found that PCA improved 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic cell loss. Moreover, PCA increased the expressions of PLK2, p-GSK3ß and Nrf2, following the decrease of α-synuclein (α-Syn) in MPTP-intoxicated mice. Cell viability was increased and the apoptosis rate was reduced by PCA in 1-methyl-4-phenylpyridinium iodide (MPP+)-incubated cells. Mitochondrial membrane potential (MMP), mitochondrial complex I activity and reactive oxygen species (ROS) levels in MPP+-incubated cells were also ameliorated by treatment with PCA. The neuroprotective effects of PCA were abolished by inhibition or knockdown of PLK2, whereas overexpression of PLK2 strengthened the protection of PCA. Furthermore, GSK3ß and Nrf2 were involved in PCA-induced protection. These results indicated that PCA has therapeutic effects on PD by the PLK2/p-GSK3ß/Nrf2 pathway.


Subject(s)
Benzaldehydes/pharmacology , Catechols/pharmacology , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Parkinson Disease/prevention & control , Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis/drug effects , Benzaldehydes/therapeutic use , Catechols/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Dopaminergic Neurons/drug effects , Drug Evaluation, Preclinical , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Neuroprotective Agents/therapeutic use , Parkinson Disease/metabolism , Phytotherapy , Salvia miltiorrhiza , Signal Transduction/drug effects
4.
Cell Mol Neurobiol ; 39(6): 751-768, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31020571

ABSTRACT

Evidence suggests that microglia/macrophages can change their phenotype to M1 or M2 and participate in tissue damage or repair. Berberine (BBR) has shown promise in experimental stroke models, but its effects on microglial polarization and long-term recovery after stroke are elusive. Here, we investigated the effects of BBR on angiogenesis and microglial polarization through AMPK signaling after stroke. In the present study, C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO), intragastrically administrated with BBR at 50 mg/kg/day. Neo-angiogenesis was observed by 68Ga-NODAGA-RGD micro-PET/CT and immunohistochemistry. Immunofluorescent staining further exhibited an increase of M2 microglia and a reduction of M1 microglia at 14 days after stroke. In vitro studies, the lipopolysaccharide (LPS)-induced BV2 microglial cells were used to confirm the AMPK activation effect of BBR. RT-PCR, Flow cytometry, and ELISA all demonstrated that BBR could inhibit M1 polarization and promote M2 polarization. Furthermore, treatment of human umbilical vein endothelial cells (HUVEC) with conditioned media collected from BBR-treated BV2 cells promoted angiogenesis. All effects stated above were reversed by AMPK inhibitor (Compound C) and AMPK siRNA. In conclusion, BBR treatment improves functional recovery and promotes angiogenesis following tMCAO via AMPK-dependent microglial M2 polarization.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Berberine/therapeutic use , Brain Ischemia/drug therapy , Cell Polarity , Microglia/enzymology , Microglia/pathology , Neovascularization, Physiologic , Stroke/drug therapy , Animals , Berberine/pharmacology , Brain/pathology , Brain Ischemia/complications , Cell Line , Cell Movement/drug effects , Cell Polarity/drug effects , Cytokines/metabolism , Enzyme Activation/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Infarction, Middle Cerebral Artery/complications , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Microglia/drug effects , Neovascularization, Physiologic/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Signal Transduction/drug effects , Stroke/complications
5.
Acta Pharmacol Sin ; 39(11): 1706-1715, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30266998

ABSTRACT

Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Berberine is a natural medicine with multiple beneficial biological activities. In this study, we explored the mechanisms underlying the neuroprotective action of berberine in mice subjected transient middle cerebral artery occlusion (tMCAO). Male mice were administered berberine (25, 50 mg/kg/d, intragastric; i.g.), glycyrrhizin (50 mg/kg/d, intraperitoneal), or berberine (50 mg/kg/d, i.g.) plus glycyrrhizin (50 mg/kg/d, intraperitoneal) for 14 consecutive days before tMCAO. The neurological deficit scores were evaluated at 24 h after tMCAO, and then the mice were killed to obtain the brain samples. We showed that pretreatment with berberine dose-dependently decreased the infarct size, neurological deficits, hispathological changes, brain edema, and inflammatory mediators in serum and ischemic cortical tissue. We revealed that pretreatment with berberine significantly enhanced uptake of 18F-fluorodeoxyglucose of ischemic hemisphere comparing with the vehicle group at 24 h after stroke. Furthermore, pretreatment with berberine dose-dependently suppressed the nuclear-to cytosolic translocation of high-mobility group box1 (HMGB1) protein, the cytosolic-to nuclear translocation of nuclear factor kappa B (NF-κB) and decreased the expression of TLR4 in ischemic cortical tissue. Moreover, co-administration of glycyrrhizin and berberine exerted more potent suppression on the HMGB1/TLR4/NF-κB pathway than berberine or glycyrrhizin administered alone. These results demonstrate that berberine protects the brain from ischemia-reperfusion injury and the mechanism may rely on its anti-inflammatory effects mediated by suppressing the activation of HMGB1/TLR4/NF-κB signaling.


Subject(s)
Berberine/therapeutic use , HMGB1 Protein/antagonists & inhibitors , Infarction, Middle Cerebral Artery/drug therapy , NF-kappa B p50 Subunit/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Reperfusion Injury/drug therapy , Animals , Brain/pathology , Brain Edema/drug therapy , Down-Regulation , Glycyrrhizic Acid/therapeutic use , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Infarction, Middle Cerebral Artery/etiology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Mice, Inbred C57BL , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Reperfusion Injury/complications , Signal Transduction/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL