Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Huan Jing Ke Xue ; 37(4): 1568-75, 2016 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-27548984

ABSTRACT

In order to determine the degree of biological genetic injury induced by PPCPs, the genotoxic effects of the doxycycline (DOX), ciprofloxacin (CIP), triclocarban (TCC) and carbamazepine (CBZ) in the concentration range of 12.5-100 mg · L⁻¹ were studied using micronucleus rate and micronucleus index of Vicia-fabe and garlic. The results showed that: (1) When the Vicia-faba root- tip cells were exposed to DOX, CIP, TCC and CBZ, micronucleus rates were higher than 1.67 ‰ (CK1), it was significantly different from that of the control group (P < 0.05), and the micronucleus index was even greater than 3.5; With the increasing concentrations of the PPCPs, the micronucleus rates first increased and then decreased. (2) When the garlic root tip cells were exposed to DOX, CIP, TCC and CBZ respectively, the micronucleus rates were less than those of the Vicia-faba, while in most treatments significantly higher than that of the control group (0.67‰). The micronucleus index was higher than 3.5 in the groups exposed to CIP with concentrations of 25, 50, 100 mg · L⁻¹ and TCC and CBZ with concentrations of 25 mg · L⁻¹; With the increase of exposure concentrations, the micronucleus rate showed a trend of first increasing and then decreasing as well. (3) Under the same experimental conditions, the cells micronucleus rates of the garlic cells caused by the four tested compounds were significantly lower than those of Vicia-faba. (4) The micronucleus index of the root tip cells of Vicia-faba and garlic treated with the four kinds of compounds followed the order of CIP > CBZ > TCC > DOX. These results demonstrated that the four compounds caused biological genetic injury to root-tip cells of Vicia-faba and garlic, and the genetic damage caused to garlic was significantly lower than that to Vicia-faba. The damages caused by the four kinds of different compounds were also different.


Subject(s)
Garlic/drug effects , Plant Roots/drug effects , Vicia faba/drug effects , Carbamazepine/toxicity , Carbanilides/toxicity , Ciprofloxacin/toxicity , DNA Damage , Doxycycline/toxicity , Micronucleus Tests
2.
Huan Jing Ke Xue ; 31(10): 2475-80, 2010 Oct.
Article in Chinese | MEDLINE | ID: mdl-21229764

ABSTRACT

An atrazine-degrading strain HB-5 was used as a bacteria for biodegradation. Treatments of soil with nitrogen single, phosphate single and nitrogen phosphate together with HB-5 were carried out for degradation and eco-toxicity test; then, relationship between atrazine degradation rate and soil available nitrogen, available phosphorus were discussed. Atrazine residues were determined by HPLC; available nitrogen was determined with alkaline hydrolysis diffusion method; available phosphorus was determined with 0.5 mol/L-NaHCO3 extraction and molybdenum stibium anti-color method, and toxicity test was carried out with micronucleus test of Vicia faba root tip cells. The results showed that: After separately or together application, nitrogenous and phosphorous fertilizers could significantly accelerate atrazine degradation than soil with HB-5 only. On day 5, the order of atrazine degradation was ANP > AP > AN > A; 7 days later, no statistically significant differences were found between treatments. The available nitrogen and phosphorus level in soil reduced as the degradation rate increased in the soil. The soil of eco-toxicity test results indicated that the eco-toxicity significantly reduced with the degradation of atrazine by HB-5, and the eco-toxicity on treatments of soil with fertilizer were all below the treatments without fertilizer. On day 5, the order of eco-toxicity was ANP < AP < AN < A; 7 days later, all treatments were decreased in control levels. So, adjusting soil nutrient content could not only promote atrazine degradation in soil but also could reduce the soil eco-toxicity effects that atrazine caused. All these results could be keystone of atrazine pollution remediation in contaminated soil in the future.


Subject(s)
Arthrobacter/metabolism , Atrazine/isolation & purification , Herbicides/isolation & purification , Nitrogen/chemistry , Phosphorus/chemistry , Arthrobacter/isolation & purification , Atrazine/metabolism , Atrazine/toxicity , Biodegradation, Environmental , Fertilizers , Herbicides/metabolism , Herbicides/toxicity , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL