Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 19(26): e2207995, 2023 06.
Article in English | MEDLINE | ID: mdl-36942859

ABSTRACT

Effectively interfering energy metabolism in tumor cells and simultaneously activating the in vivo immune system to perform immune attacks are meaningful for tumor treatment. However, precisely targeted therapy is still a huge challenge. Herein, a mitochondrial-targeting phototheranostic system, FE-T nanoparticles (FE-T NPs) are developed to damage mitochondria in tumor cells and change the tumor immunosuppressive microenvironment. FE-T NPs are engineered by encapsulating the near-infrared (NIR) absorbed photosensitizer IR-FE-TPP within amphiphilic copolymer DSPE-SS-PEG-COOH for high-performing with simultaneous mitochondrial-targeting, near-infrared II (NIR-II) fluorescence imaging, and synchronous photothermal therapy (PTT) /photodynamic therapy (PDT) /immune therapy (IMT). In tumor treatment, the disulfide in the copolymer can be cleaved by excess intracellular glutathione (GSH) to release IR-FE-TPP and accumulate in mitochondria. After 808 nm irradiation, the mitochondrial localization of FE-T NPs generated reactive oxygen species (ROS), and hyperthermia, leading to mitochondrial dysfunction, photoinductive apoptosis, and immunogenic cell death (ICD). Notably, in situ enhanced PDT/PTT in vivo via mitochondrial-targeting with FE-T NPs boosts highly efficient ICD toward excellent antitumor immune response. FE-T NPs provide an effective mitochondrial-targeting phototheranostic nanoplatform for imaging-guided tumor therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Combined Modality Therapy , Photosensitizing Agents , Neoplasms/diagnostic imaging , Neoplasms/therapy , Polymers , Mitochondria , Photochemotherapy/methods , Cell Line, Tumor , Phototherapy/methods , Tumor Microenvironment
2.
J Colloid Interface Sci ; 344(2): 541-6, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20092825

ABSTRACT

In this paper, we report the fabrication of superhydrophobic polyimide (PI) nanotube arrays with different topographies, which possess slippery or "sticky" superhydrophobicity. The PI nanotube arrays were fabricated by the porous alumina membrane molding method. We regulated three kinds of solvent evaporation and drying processes, which controlled different congregated and noncongregated topographies of PI nanotube arrays. Large scale comb-like congregated topography possesses a small sliding angle (SA<5 degrees), small scale comb-like congregated topography possesses a medium sliding angle (SA is about 30 degrees), noncongregated topography possesses a large sliding angle (strong adhesive force to water droplet). Moreover, the as-prepared superhydrophobic PI nanotube arrays have remarkable resistivity to acid, weak base, high temperature (up to 350 degrees C) and various organic solvents. Our work provides a facile and promising strategy to fabricate superhydrophobic surfaces with controlled sliding angles by utilizing self-organization effect, and such high performance superhydrophobic PI nanotube arrays can be used as coating materials in various harsh conditions.


Subject(s)
Biocompatible Materials/chemistry , Nanotubes/chemistry , Resins, Synthetic/chemistry , Aluminum Oxide/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Particle Size , Porosity , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL