Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5717-5734, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471990

ABSTRACT

This study aimed to forecast the main active components of Xiaoer Chiqiao Qingre Granules(XECQ) in the treatment of children with acute upper respiratory tract infection by UPLC-MS, network pharmacology, molecular docking and cell biology, and explore the mechanism of action, so as to provide certain reference for the research on its pharmacodynamics substances and mechanism of action. The main chemical components of XECQ were comprehensively analyzed by UPLC-Q-TOF-MS combined with UNIFI platform. According to the MS1 and MS2 data of XECQ, comparison and identification were carried out in combination with reference substances and reference articles. On this basis, the chemical components of XECQ were targeted and enriched by network pharmacology, to screen the main pharmacodynamic substances of XECQ in the treatment of acute upper respiratory tract infection in children and discuss the mechanism of action. In addition, the binding degree of core targets and main active components was verified by molecular docking. The results revealed that 202 compounds were identified from XECQ, among which 22 were the main active components, including obovatol, dihydroartemisinin, and longikaurin A. Enrichment analysis of the key target pathways showed that XECQ played its role in the treatment of children with acute upper respiratory tract infection mainly by regulating PI3K/Akt signaling pathway and MAPK signaling pathway. In the experimental verification by Western Blot(WB), it was found that XECQ significantly inhibited the expression of PI3K and Akt, which was consistent with the prediction results of network pharmacology. In conclusion, the potential pharmacodynamic substances of XECQ were obovatol, dihydroartemisinin, longikaurin A and other 19 active components. It treated children with acute upper respiratory tract infection by regulating the PI3K/Akt signaling pathway.


Subject(s)
Artemisinins , Drugs, Chinese Herbal , Respiratory Tract Infections , Child , Humans , Chromatography, Liquid , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt , Tandem Mass Spectrometry , Respiratory Tract Infections/drug therapy , Drugs, Chinese Herbal/pharmacology
2.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5735-5745, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471991

ABSTRACT

This study aimed to elucidate the digestive characteristics of flavonoid components in Xiaoer Chiqiao Qingre Granules(XECQ) in the gastrointestinal environment of infants. An in vitro model was established to simulate the gastric and intestinal environment of infants. UPLC was used to analyze the content change of flavonoid components in XECQ, and their overall content was integrated through the mass fraction weight coefficient method. UPLC-Q-TOF-MS was employed to determine the digestive products of flavonoid components in gastrointestinal fluids and their metabolic pathways. The results showed that in the process of digestion, 11 digestion products were generated by oxidation, reduction, deglycosylation, methylation and other phase Ⅰ metabolism. From flavonoid content and component changes, it was found that the flavonoid components in XECQ were relatively stable in the gastric fluid, while their content in the intestinal fluid was first increased and then maintained stable. This was mainly because flavonoid components were released from proteins, polysaccharides and other macromolecular substances during gastrointestinal digestion. In addition, phase Ⅰ metabolism occurred, but with relatively low metabolic rate, resulting in their stable content. This study preliminarily explored the digestive characteristics of flavonoid components in XECQ in the infant gastrointestinal environment, which laid a foundation for further studying the absorption, transport and metabolism of pharmacodynamics components in XECQ, and facilitated the study of the biopharmaceutical pro-perties of pediatric Chinese medicine.


Subject(s)
Drugs, Chinese Herbal , Flavonoids , Infant , Humans , Child , Flavonoids/metabolism , Gastrointestinal Tract , Intestines , Drugs, Chinese Herbal/metabolism , Chromatography, High Pressure Liquid
3.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5775-5788, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471995

ABSTRACT

To clarify the metabolic transformation mechanism of phenylethanoid glycosides in Xiaoer Chiqiao Qingre Granules in vivo, this study extracted and separated the phenylethanoid glycosides in Xiaoer Chiqiao Qingre Granules. Based on UPLC-Q-TOF-MS/MS technology, the retention time and primary and secondary mass spectrometry information were analyzed by UNIFI software, and 11 phenylethanoid glycosides in Xiaoer Chiqiao Qingre Granules were preliminarily identified. Sixty-nine metabolites related to phenylethanoid glycosides were identified from the plasma samples of juvenile rats after administration of Xiaoer Chiqiao Qingre Granules. In addition, this study simulated the transformation system of intestinal flora in children, and discussed the metabolic effects of intestinal flora on the representative components forsythoside A, forsythoside E, and salidroside of phenylethanoid glycosides. The model of gastrointestinal heat retention in children with food accumulation was established to study the differential metabolites of phenylethanoid glycosides. Through the comparative analysis of the representative components absorbed in blood and the intestinal floral transformation products, it was found that the main metabolic pathways of phenylethanoid glycosides were dehydrogenation, oxidation, acetylation, sulfation, and glucuronidation. The findings of this study revealed the transformation law of phenylethanoid glycosides in the gastrointestinal tract. Through the preliminary discussion of the pharmacological mechanism, this study provides references for further clarifying the pharmacodynamic material basis of Xiaoer Chiqiao Qingre Granules and exploring the pediatric Chinese medicine compound.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Rats , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Glycosides/analysis , Drugs, Chinese Herbal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL