Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Ecol Evol ; 9(23): 13030-13042, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31871627

ABSTRACT

The members of the Indochinese box turtle complex, namely Cuora galbinifrons, Cuora bourreti, and Cuora picturata, rank the most critically endangered turtle species on earth after more than three decades of over-harvesting for food, traditional Chinese medicine, and pet markets. Despite advances in molecular biology, species boundaries and phylogenetic relationships, the status of the C. galbinifrons complex remains unresolved due to the small number of specimens observed and collected in the field. In this study, we present analyses of morphologic characters as well as mitochondrial and nuclear DNA data to reconstruct the species boundaries and systematic relationships within the C. galbinifrons complex. Based on principal component analysis (PCA) and statistical analysis, we found that phenotypic traits partially overlapped among galbinifrons, bourreti, and picturata, and that galbinifrons and bourreti might be only subspecifically distinct. Moreover, we used the mitochondrial genome, COI, and nuclear gene Rag1 under the maximum likelihood criteria and Bayesian inference criteria to elucidate whether C. galbinifrons could be divided into three separate species or subspecies. We found strong support for a sister relationship between picturata and the other two species, and consequently, we recommend maintaining picturata as a full species, and classifying bourreti and galbinifrons as subspecies of C. galbinifrons. These findings provide evidence for a better understanding of the evolutionary histories of these critically endangered turtles.

2.
Chemosphere ; 219: 923-932, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30572241

ABSTRACT

As a neurotoxic insecticide, imidacloprid (IMI) has been widely used for crop protection. However, continuous application of such pesticide in the environment may damage the non-target organisms in soil. In the present study, we aimed to investigate the effects of IMI on earthworms in terms of survival, avoidance behavior, reproduction, detoxification enzyme activity and gene expression using a systematic experimental approach. The results showed that the 14-day LC50 value of IMI was 2.26 (2.09-2.43) mg a.i. kg-1, and the 2-day AC50 value (concentration inducing an avoidance rate of 50%) of IMI was 1.34 (1.02-1.91) mg a.i. kg-1 to E. fetida. For reproduction, the 56-day EC50 value of IMI was 0.87 (0.66-1.33) mg a.i. kg-1 to E. fetida, and there was a positive correlation between the growth rate of earthworms and the number of juveniles in IMI treatments. Activities of carboxylesterase (CarE) and glutathione-S-transferases (GST) in earthworms were disturbed by IMI exposure. Moreover, effects of IMI on the CarE activity in earthworms were more severe and sensitive compared with the GST activity. The expressions of annetocin (ann) and calreticulin (crt) at the transcriptional level were decreased upon IMI exposure, reaching the lowest levels of 0.09 fold and 0.16 fold on day 7 and day 14, respectively. Transcriptionally controlled tumor protein (tctp), heat shock protein 70 (hsp70) and gst exhibited relatively obvious variations (up-regulation or down-regulation) when the exposure duration was extended. Taken together, these results comprehensively contributed to further understandings of the impacts of IMI on earthworms.


Subject(s)
Ecotoxicology/methods , Neonicotinoids/therapeutic use , Nitro Compounds/therapeutic use , Oligochaeta/drug effects , Soil Pollutants/chemistry , Soil/chemistry , Animals , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology
3.
Biochem Biophys Res Commun ; 506(4): 874-882, 2018 12 02.
Article in English | MEDLINE | ID: mdl-30392910

ABSTRACT

Serum transferrin (tf), encoding an iron-binding glycoprotein, has been revealed to play important roles in iron transportation and immune response, and it also has been demonstrated to be valuable for phylogenetic analysis in vertebrates. However, the evolutionary conservation, expression profiles and positive selection of transferrin genes among freshwater turtle species remain largely unclear. Here, the genomic DNA and coding sequences of transferrin genes were cloned and characterized in seven freshwater turtles including Mauremys mutica, Mauremys sinensis, Cyclemys dentate, Mauremyssi reevesi, Heosemys grandis, Trachemys scripta and Chrysemys picta. The isolated coding sequences of turtles' tf genes were 2118 bp or 2121 bp, encoding 706 or 707 amino acids. The predicted Tf proteins of turtles share high identities with M. mutica Tf, up to 91%-98% and the M. mutica Tf has the highest identity (91%) in amino acid with the Chelomia mydas Tf, the moderate with other reptiles' Tfs (65%-59%), chicken (58%), and Human Tf (∼55%), and the lowest with zebrafish Tf (41%). Additionally, tf genes were consistently composed of 17 exons and 16 introns with the same splicing sites in introns in all the turtles examined. Moreover, 12 positive selected sites were detected in these turtles' Tf and mainly distributed on the surface of transferrin protein. Importantly, it was found that transferrin genes in all turtles examined were predominantly expressed in adult liver via real-time quantitative PCR. The molecular characterizations and expression profiles of transferrin would shed new insights into understanding the conversations and divergences of transferrin genes in turtles, even in vertebrates.


Subject(s)
Evolution, Molecular , Fresh Water , Gene Expression Regulation , Genome , Transferrin/genetics , Turtles/genetics , Amino Acid Sequence , Animals , Bayes Theorem , Cloning, Molecular , DNA, Complementary/genetics , Exons , Introns , Models, Molecular , Organ Specificity/genetics , Selection, Genetic , Transferrin/chemistry
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3507-10, 2016 09.
Article in English | MEDLINE | ID: mdl-26260182

ABSTRACT

The mitochondrial DNA cytochrome c oxidase subunit I gene (COI) has been used as an efficient barcoding tool for species identification of animals. In this study, the barcoding sequences were used to assess the genetic diversity and relationship of Mauremy mutica and M. annamensis. Four currently recognized groups of M. mutica were classified into two groups in this study, with 6% intergroup distances, the S group and the N group, consistent to the calling of "southern turtle" and "northern turtle" in folk of China. The north population and Taiwan population formed the N group, and further, the Taiwan population was differentiated as a monophyly originated from the north population, consistent to the calling of "big green head" for the Taiwan population and "small green head" for the north population. The Vietnam, Hainan population, and M. annamensis formed the S group, and the barcoding sequences could not distinguish them from each other. Based on the molecular data and phenotypes of existing hybrids, hybrid origin of M. annamensis may be another possibility.


Subject(s)
DNA Barcoding, Taxonomic/methods , Turtles/classification , Animals , Electron Transport Complex IV/genetics , Evolution, Molecular , Phylogeny , Turtles/genetics
5.
Fish Shellfish Immunol ; 34(1): 273-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23178692

ABSTRACT

GRIM-19 is a nuclear encoded subunit of complex I that has been implicated in apoptosis. The protein participates in multiple functions including the innate immune response. GRIM-19 has been studied in humans and other mammals; however, fish GRIM-19 has not been well characterized. In this study, a new GRIM-19 gene, EcGRIM-19, was isolated from the orange-spotted grouper (Epinephelus coioides) cDNA library, which was constructed following LPS treatment. EcGRIM-19 is a 582-bp gene that encodes a 144-amino acid protein. The gene is a true ortholog of mammalian GRIM-19. EcGRIM-19 exhibits ubiquitous and constitutive expression in the different tissues of the orange-spotted grouper. The expression levels of EcGRIM-19 are altered in the gill, spleen, kidney and liver after induction with LPS. The subcellular localization analysis demonstrated that the EcGRIM-19 protein is localized predominantly in the mitochondria. In addition, amino acids 30-50 of the protein are responsible for the mitochondrial localization of EcGRIM-19. The caspase assay demonstrated that the overexpression of GRIM-19 enhanced the cellular sensitivity to interferon(IFN)-ß- and retinoic acid (RA)-induced death in HeLa cells. The data presented in this study are important for further understanding the EcGRIM-19 gene function in fish.


Subject(s)
Bass/genetics , Bass/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Amino Acid Sequence , Animals , Apoptosis , Caspases/metabolism , Cloning, Molecular , DNA, Complementary/genetics , HeLa Cells , Humans , Interferon-beta/metabolism , Lipopolysaccharides/pharmacology , Molecular Sequence Data , Organ Specificity , Phylogeny , RNA/genetics , Real-Time Polymerase Chain Reaction , Sequence Alignment , Transfection , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL