Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 400: 134007, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36055149

ABSTRACT

On-site screening of biotoxins is of great importance for food safety. A new electrochemical-biosensing strategy was constructed for ochratoxin A (OTA) detection by direct using ready-made commercial portable-glucose-meter (PGM). Aptamer against OTA was adopted as the recognition probe and pre-immobilized onto the sensing interface. The complementary biotin-modified probe was further decorated by hybridization. Biotinylated invertase was further introduced onto the sensing system with streptavidin, which also acted as the signal amplification unit. The invertase, which was depended on the amount of OTA, produced the glucose from sucrose in the sensing solution. The glucose could be directly and conveniently measured with PGM. Quantitative analysis of OTA was achieved with a linear range from 0.5 ng/mL to 10 ng/mL and detection limit of 0.45 ng/mL. Of significance, it has been successfully applied for OTA analysis in rice with satisfied recoveries. This unique PGM-based electrochemical platform reveals prospective potential in food safety monitoring.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Oryza , Aptamers, Nucleotide/chemistry , Biotin , Electrochemical Techniques , Glucose , Limit of Detection , Ochratoxins/analysis , Streptavidin , Sucrose , beta-Fructofuranosidase
2.
Article in English | MEDLINE | ID: mdl-33095110

ABSTRACT

Microemulsion cleaning method has been proved to be an effective way to clean oily sludge with low interfacial tension and high solubilizing ability for non-miscible liquids. In this paper, the percentage range of the microemulsion in the formulation was obtained by studying phase behavior of the microemulsion. The response surface method was used to model and optimize the microemulsion to obtain the best formulation: n-BuOH content at 9.89%, NaCl content at 2.24% and AES/APG ratio at 3.75, and the oil removal rate reached 97.28%. Meanwhile, the cleaning conditions of oil sludge were also optimized by the response surface method and the optimal cleaning parameters were determined as liquid-solid ratio at 4.2, stirring rate at 157 r·min-1, and stirring time at 38 min. In addition, some experiments were carried out to confirm the simulation results, affording the oil removal rate of 98.79%. SEM and FTIR confirmed that the oil on the sludge can be removed by microemulsion.


Subject(s)
Petroleum/analysis , Sewage/chemistry , Surface-Active Agents/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Emulsions
3.
Appl Microbiol Biotechnol ; 99(17): 7069-78, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25998657

ABSTRACT

Mechanisms of glutathione (GSH) over-accumulation in mutant Saccharomyces cerevisiae Y518 screened by ultraviolet and nitrosoguanidine-induced random mutagenesis were studied. Y518 accumulated higher levels of GSH and L-cysteine than its wild-type strain. RNA-Seq and pathway enrichment analysis indicated a difference in the expression of key genes involved in cysteine production, the GSH biosynthesis pathway, and antioxidation processes. GSH1, MET17, CYS4, GPX2, CTT1, TRX2, and SOD1 and the transcriptional activators SKN7 and YAP1 were up-regulated in the mutant. Moreover, Y518 showed a dysfunctional respiratory chain resulting from dramatically weakened activity of complex III and significant elevation of intracellular reactive oxygen species (ROS) levels. The supplementation of antimycin A in the culture of the parent strain showed equivalent changes of ROS and GSH level. This study indicates that defective complex III prompts abundant endogenic ROS generation, which triggers an oxidative stress response and upregulation of gene expression associated with GSH biosynthesis. This finding may be helpful for developing new strategies for GSH fermentation process optimization or metabolic engineering.


Subject(s)
Glutathione/metabolism , Oxidative Stress , Saccharomyces cerevisiae/physiology , Stress, Physiological , Cysteine/metabolism , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Gene Expression Profiling , Mutagenesis , Nitrosoguanidines/metabolism , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/radiation effects , Ultraviolet Rays
4.
Macromol Rapid Commun ; 31(2): 228-36, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-21590896

ABSTRACT

In this work, we describe the preparation and biomedical functionalities of complex nanoparticle assemblies with magnetoplasmonic properties suitable for simultaneous cancer therapy and diagnostics (theranostics). Most commonly magnetoplasmonic nanostructures are made by careful adaptation of metal reduction protocols which is both tedious and restrictive. Here we apply the strategy of nanoscale assemblies to prepare such systems from individual building blocks. The prepared superstructures are based on magnetic Fe(3) O(4) nanoparticles encapsulated in silica shell representing the magnetic module. The cores are surrounded in a corona-like fashion by gold nanoparticles representing the plasmonic module. As additional functionality they were also coated by poly(ethyleneglycol) chains as a cloaking agent to extend the blood circulation time. The preparation is exceptionally simple and allows one to vary the contribution of each function. Both modules can carry drugs and, in this study, they were loaded with the potential anticancer drug curcumin. A comprehensive set of microscopy, spectroscopy and biochemical methods were applied to characterize both imaging and therapeutic function of the nanoparticle assemblies against leukemia HL-60 cells. High contrast magnetic resonance images and high apoptosis rates demonstrate the success of assembly approach for the preparation of magnetoplasmonic nanoparticles. This technology allows one to easily "dial in" the functionalities in the clinical setting for personalized theranostic regiments.

SELECTION OF CITATIONS
SEARCH DETAIL