Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anim Nutr ; 9: 23-30, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949979

ABSTRACT

The present study was carried out to evaluate the effect of dietary supplemental vitamin D3 on fibroblast growth factor 23 (FGF23) signals as well as phosphorus homeostasis and metabolism in laying hens. Fourteen 40-week-old Hy-Line Brown layers were randomly assigned into 2 treatments: 1) vitamin D3 restriction group (n = 7) fed 0 IU/kg vitamin D3 diet, and 2) regular vitamin D3 group (n = 7) fed 1,600 IU/kg vitamin D3 diet. The study lasted for 21 d. Serum parameters, phosphorus and calcium excretion status, and tissue expressions of type II sodium-phosphate co-transporters (NPt2), FGF23 signals and vitamin D3 metabolic regulators were determined. Hens fed the vitamin D3 restricted diet had decreased serum phosphorus levels (by 31.3%, P = 0.028) when compared to those fed regular vitamin D3 diet. In response to the decreased serum phosphorus, the vitamin D3 restricted laying hens exhibited: 1) suppressed kidney expressions of 25-hydroxyvitamin D 1-α-hydroxylase (CYP27B1, by 52.8%, P = 0.036) and 1,25-dihydroxyvitamin D 24-hydroxylase (CYP24A1, by 99.4%, P = 0.032); 2) suppressed serum levels of FGF23 (by 14.6%, P = 0.048) and increased serum alkaline phosphatase level (by 414.1%, P = 0.012); 3) decreased calvaria mRNA expressions of fibroblast growth factor receptors (FGFR1, by 85.2%, P = 0.003, FGFR2, by 89.4%, P = 0.014, FGFR3, by 88.8%, P = 0.017, FGFR4, by 89.6%, P = 0.030); 4) decreased kidney mRNA expressions of FGFR1 (by 65.5%, P = 0.021), FGFR4 (by 66.0%, P = 0.050) and KLOTHO (by 68.8%, P = 0.038); 5) decreased kidney protein expression of type 2a sodium-phosphorus co-transporters (by 54.3%, P = 0.039); and 6) increased percent excreta calcium (by 26.9%, P = 0.002). In conclusion, the deprivation of dietary vitamin D3 decreased FGF23 signals in laying hens by reducing serum FGF23 level and suppressing calvaria and kidney mRNA expressions of FGF23 receptors.

2.
Anim Nutr ; 7(4): 973-980, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34703915

ABSTRACT

In ovo feeding of vitamin C (VC) has positive effects on the growth performance, immune and antioxidant function in poultry, which indicates that increasing VC content in eggs may be of benefit. This study was to investigate the effects of dietary VC supplementation on VC synthesis and transportation and egg deposition. In Exp. 1, in order to select a suitable animal model, VC content was detected in different eggs from different layer species. Vitamin C content was lower in ISA Brown breeder eggs and Hy-Line Brown layer eggs (P < 0.05) then in Arbor Acres breeder eggs. In Exp. 2, a total of 24 Hy-Line Brown layers (42-week-old) were randomly divided into 3 treatments with 8 replicates and fed a basal diet with VC at 0, 200 and 400 mg/kg. Sodium-dependent VC transporter 1 and 2 (SVCT1 and SVCT2) expressions were higher in ileum than in duodenum and jejunum (P < 0.05). SVCT1 expression was higher but SVCT2 expression was lower in the magnum than in the ovary (P < 0.05). L-Gulonolactone oxidase (GLO) and SVCT1 expressions were higher but SVCT2 was lower in the kidney than in the liver (P < 0.05). Dietary VC supplementation at 400 mg/kg increased SVCT1 expression in duodenum, ovary and magnum, but decreased GLO and SVCT1 expression in liver (P < 0.05). Dietary VC supplementation at 200 and 400 mg/kg increased SVCT2 expression in duodenum, but decreased GLO and SVCT1 expression in kidney and SVCT2 expression in liver (P < 0.05). Dietary VC supplementation promoted VC absorption in duodenum and jejunum, but reduced endogenous VC synthesis in liver and kidney. Although dietary VC supplementation enhanced VC transportation in ovary and magnum, it did not increase VC deposition in produced eggs.

3.
J Anim Sci Biotechnol ; 12(1): 86, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34340712

ABSTRACT

BACKGROUND: Many researches about in ovo feeding (IOF) of vitamin C (VC) are gradually carried out to explore physiological development in chicken, but little studies focus on VC synthesis capacity of the embryo itself, the selection of injection site and the effectiveness of IOF of VC. This study aims to explore the above problems. RESULTS: Kidney and yolk sac were the main organs for VC synthesis and L-gulonolactone oxidase (GLO) expression was lower during pre-hatch development than that during post-hatch development. Sodium-dependent vitamin C transporter 1 (SVCT1) expression was increased continuously in yolk sac from embryonic age 19 (E19) to post-hatch day 1 (D1) and in intestine (duodenum, jejunum and ileum) from E17 to D1. Plasma VC content was higher at D1 than that at D21 and D42. IOF of VC significantly reduced GLO expression in liver, kidney and yolk sac as well as SVCT1 expression in duodenum, jejunum and ileum, but increased the VC content in plasma, brain, kidney and liver. In addition, IOF of VC obviously reduced the embryonic morality and increased the hatchability under heat stress. CONCLUSIONS: This study suggested that IOF of VC at E11 in yolk was effective for embryonic VC supplementation. These findings provide a theoretical reference about the method of embryonic VC supplementation and effective methodology on embryonic VC nutrition in broiler chickens.

4.
Theriogenology ; 138: 102-110, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31325740

ABSTRACT

Dietary folate intake, together with changes in its metabolism process, have effects on male reproduction, sperm epigenetic patterning and offspring outcome. Previous studies have proven that PIWI-interacting RNAs (piRNAs) play important roles in successful spermatogenesis and regulating genes expression of sperm and offspring embryo. Herein, we fed breeder roosters with five different levels (0, 0.25, 1.25, 2.50, and 5.00 mg/kg) of folate throughout life and found that paternal folate supplementation was beneficial to the growth and organ development of offspring broilers. Further spermatozoal mRNAs sequencing analyses implied that the dietary folate supplementation could regulate the spermatozoal mRNA abundance of genes related to the fetal development. Furthermore, global piRNAs analyses of breeder roosters' sperm revealed that differential concentration of dietary folate supplementation could change piRNAs profiles. Combined mRNAs sequencing and target gene prediction of differentially expressed gene-derived piRNAs, embryonic development and metabolism related pathways and biological processes, which were consisted to the regulatory roles of paternal folate supplementations, were significantly affected by the differentially expressed gene-derived piRNAs based on the GO and KEGG analyses. Overall, our results provided a novel insight into the role of piRNAs in response to folate intake, which will broaden the understanding about the relationship between folate and sperm epigenetic patterning of breeder roosters.


Subject(s)
Chickens , Embryonic Development/drug effects , Embryonic Development/genetics , Folic Acid/pharmacology , RNA, Small Interfering/genetics , Spermatozoa/drug effects , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Breeding , Chickens/genetics , Diet , Dietary Supplements , Folic Acid/administration & dosage , Gene Expression Regulation/drug effects , Male , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Small Interfering/drug effects , Spermatozoa/metabolism
5.
Poult Sci ; 98(2): 828-841, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30169708

ABSTRACT

A study was conducted to study the effects of glucose oxidase (GOD) supplement on the growth performance, gut function, and cecal microbiota in broiler chickens from 1 to 42 d, and further evaluate the use of GOD as an antibiotic substitution. A total of 525 1-d-old healthy Arbor Acres broilers were randomly assigned to five treatments, including control group, antibiotic growth promoters (AGP) supplement group, and three GOD supplement groups, with seven replicates per treatment and 15 birds per replicate. Growth performance, gut function including digestive ability and gut barrier, and cecal microbiota were determined. Compared with the control group, the increased daily body weight gain, improved meat quality, and enhanced digestive ability that indicated from the nutrients apparent digestibility and digestive enzymes were identified in GOD supplement groups, which could have a similar effect with the AGP supplement. The content of secreted immunoglobulin A and the transepithelial electrical resistance were also increased with the GOD supplement, which indicated an enhanced gut barrier. Additionally, 16S rRNA gene of cecal contents was sequenced by high-throughput sequencing. Sequencing data indicated that the Firmicutes phylum, Ruminococcaceae and Rikenellaceae families, Faecalibacterium genus, and F. prausnitzii species were significantly altered. Especially, combined with previous studies, our results indicated that the significantly increased F. prausnitzii, Ruminococcaceae, and Firmicutes could be involved in the effect of GOD on gut function and growth performance of broilers. Our results indicated that dietary GOD supplement could improve the growth performance of broilers in two main ways: by enhancing the digestive function of gut, which concluded from the improved nutrients apparent digestibility and digestive enzyme, and by increasing the abundance of beneficial bacterium, such as F. prausnitzii, Ruminococcaceae, and Firmicutes, which could be further served as an important regulator to improve the growth performance and the gut health.


Subject(s)
Cecum/microbiology , Chickens/microbiology , Chickens/physiology , Digestion/drug effects , Gastrointestinal Microbiome/drug effects , Glucose Oxidase/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Chickens/growth & development , Diet/veterinary , Dietary Supplements/analysis , Glucose Oxidase/administration & dosage , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Random Allocation , Sequence Analysis, RNA/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL