Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Nanobiotechnology ; 20(1): 187, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413842

ABSTRACT

BACKGROUND: Non-redundant properties such as hypoxia and acidosis promote tumor metabolic adaptation and limit anti-cancer therapies. The key to the adaptation of tumor cells to hypoxia is the transcriptional and stable expression of hypoxia-inducible factor-1 alpha (HIF-1α). The phosphorylation-activated tumorigenic signal PI3K/AKT/mTOR advances the production of downstream HIF-1α to adapt to tumor hypoxia. Studies have elucidated that acid favors inhibition of mTOR signal. Nonetheless, carbonic anhydrase IX (CAIX), overexpressed on membranes of hypoxia tumor cells with pH-regulatory effects, attenuates intracellular acidity, which is unfavorable for mTOR inhibition. Herein, a drug delivery nanoplatform equipped with dual PI3K/mTOR inhibitor Dactolisib (NVP-BEZ235, BEZ235) and CAIX inhibitor 4-(2-aminoethyl) benzene sulfonamide (ABS) was designed to mitigate hypoxic adaptation and improve breast cancer treatment. RESULTS: ABS and PEG-NH2 were successfully modified on the surface of hollow polydopamine (HPDA), while BEZ235 and Chlorin e6 (Ce6) were effectively loaded with the interior of HPDA to form HPDA-ABS/PEG-BEZ235/Ce6 (H-APBC) nanoparticles. The release of BEZ235 from H-APBC in acid microenvironment could mitigate PI3K/mTOR signal and resist HIF-1α-dependent tumor hypoxia adaptation. More importantly, ABS modified on the surface of H-APBC could augment intracellular acids and enhances the mTOR inhibition. The nanoplatform combined with phototherapy inhibited orthotopic breast cancer growth while reducing spontaneous lung metastasis, angiogenesis, based on altering the microenvironment adapted to hypoxia and extracellular acidosis. CONCLUSION: Taken together, compared with free BEZ235 and ABS, the nanoplatform exhibited remarkable anti-tumor efficiency, reduced hypoxia adaptation, mitigated off-tumor toxicity of BEZ235 and solved the limited bioavailability of BEZ235 caused by weak solubility.


Subject(s)
Breast Neoplasms , Carbonic Anhydrase IX , Nanoparticles , Phototherapy , Quinolines , TOR Serine-Threonine Kinases , Acidosis , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbonic Anhydrase IX/antagonists & inhibitors , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Drug Delivery Systems , Humans , Imidazoles , Molecular Targeted Therapy , Nanoparticles/administration & dosage , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Quinolines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Tumor Hypoxia
2.
J Nanobiotechnology ; 19(1): 261, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34481495

ABSTRACT

BACKGROUND: Chemodynamic therapy (CDT), employing Fenton or Fenton-like catalysts to convert hydrogen peroxide (H2O2) into toxic hydroxyl radicals (·OH) to kill cancer cells, holds great promise in tumor therapy due to its high selectivity. However, the therapeutic effect is significantly limited by insufficient intracellular H2O2 level in tumor cells. Fortunately, ß-Lapachone (Lapa) that can exert H2O2-supplementing functionality under the catalysis of nicotinamide adenine dinucleotide (phosphate) NAD(P)H: quinone oxidoreductase-1 (NQO1) enzyme offers a new idea to solve this problem. However, extensive DNA damage caused by high levels of reactive oxygen species can trigger the "hyperactivation" of poly(ADP-ribose) polymerase (PARP), which results in the severe interruption of H2O2 supply and further the reduced efficacy of CDT. Herein, we report a self-amplified nanocatalytic system (ZIF67/Ola/Lapa) to co-deliver the PARP inhibitor Olaparib (Ola) and NQO1-bioactivatable drug Lapa for sustainable H2O2 production and augmented CDT ("1 + 1 + 1 > 3"). RESULTS: The effective inhibition of PARP by Ola can synergize Lapa to enhance H2O2 formation due to the continuous NQO1 redox cycling. In turn, the high levels of H2O2 further react with Co2+ to produce the highly toxic ·OH by Fenton-like reaction, dramatically improving CDT. Both in vitro and in vivo studies demonstrate the excellent antitumor activity of ZIF67/Ola/Lapa in NQO1 overexpressed MDA-MB-231 tumor cells. Importantly, the nanocomposite presents minimal systemic toxicity in normal tissues due to the low NQO1 expression. CONCLUSIONS: This design of nanocatalytic system offers a new paradigm for combing PARP inhibitor, NQO1-bioactivatable drug and Fenton-reagents to obtain sustained H2O2 generation for tumor-specific self-amplified CDT.


Subject(s)
Antineoplastic Agents/pharmacology , Nanostructures/chemistry , Nanostructures/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis , Cell Line, Tumor , DNA Damage/drug effects , Humans , Hydrogen Peroxide/metabolism , Mice , NAD(P)H Dehydrogenase (Quinone) , Nanoparticles , Naphthoquinones , Poly (ADP-Ribose) Polymerase-1 , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL