Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Pharm Biomed Anal ; 243: 116111, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493752

ABSTRACT

Xijiao Dihuang decoction (XDT), a famous formula, was usually used to improve the prognosis of patients with blood-heat and blood-stasis syndrome-related diseases. There were some mutual promotion and mutual assistance herb pairs in XDT. However, the exact functions of these herb pairs in the compatibility of XDT were not elucidated due to the lack of appropriate methodologies. Based on the theory of serum pharmacochemistry, a systematic method was established for the qualitative and quantitative analysis of characteristic components in the extracts and drug-containing plasma samples of XDT and its relational mutual promotion/assistance herb pairs. For qualitative analysis, 85 characteristic components were identified using the liquid chromatography with triple time-of-flight mass/mass spectrometry (LC-Triple QTOF-MS/MS) based on the mass defect filtering, product ion filtering, neutral loss filtering and isotope pattern filtering techniques. For quantitative detection, a relative quantitation assay using an extract ion chromatogram (EIC) of the full scan MS experiment was validated and employed to assess the quantity of the 85 identified compounds in the test samples of single herb, herb pairs and XDT. The results of multivariate statistical analyses indicated that both the assistant and guide herbs could improve the solubilization of active compounds from the sovereign and minister herbs in XDT in vitro, might change the trans-membrane transportation, and regulate metabolism in vivo. The methods used in present study might be also valuable for the investigation of multiple components from other classic TCM formulas for the purpose of compatibility feature study.


Subject(s)
Drugs, Chinese Herbal , Humans , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
2.
Curr Drug Targets ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38213161

ABSTRACT

BACKGROUND: Hedyotis diffusa Willd. (HDW) is a common anticancer herbal medicine in China, and its therapeutic effectiveness has been demonstrated in a range of cancer patients. There is no consensus about the therapeutic targets and molecular mechanisms of HDW, which contains many active ingredients. AIM: To clarify the mechanism of HDW for esophageal adenocarcinoma (EAC), we utilized network pharmacology and weighted gene co-expression network analysis methods (WGCNA). METHODS: The gene modules that were linked with the clinical features of EAC were obtained through the WGCNA method. Then, the potential target genes were retrieved through the network pharmacology method in order to determine the targets of the active components. After enrichment analysis, a variety of signaling pathways with significant ratios of target genes were found, including regulation of trans-synaptic signaling, neuroactive ligand-receptor interaction and modulation of chemical synaptic transmission. By means of protein-protein interaction (PPI) network analysis, we have successfully identified the hub genes, which were AR, CNR1, GRIK1, MAPK10, MAPT, PGR and PIK3R1. RESULT: Our study employed molecular docking simulations to evaluate the binding affinity of the active components with the hub gene. The identified active anticancer constituents in HDW are scopoletol, quercetin, ferulic acid, coumarin, and trans-4-methoxycinnamyl alcohol. CONCLUSION: Our findings shed light on the molecular underpinnings of HDW in the treatment of EAC and hold great promise for the identification of potential HDW compounds and biomarkers for EAC therapy.

3.
J Ethnopharmacol ; 323: 117620, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38141792

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Buyang Huanwu Decoction (BYHWD), one of the most commonly utilized traditional Chinese medicine prescription for treatment of cerebral ischemic stroke. However, the understanding of BYHWD on neurovascular repair following cerebral ischemia is so far limited. AIM OF THE STUDY: This research investigated the influence of BYHWD on neurovascular remodeling by magnetic resonance imaging (MRI) technology and revealed the potential neurovascular repair mechanism underlying post-treatment with BYHWD after ischemic stroke. MATERIALS AND METHODS: Male Sprague-Dawley rats were utilized as an ischemic stroke model by permanent occlusion of the middle cerebral artery (MCAO). BYHWD was intragastrically administrated once daily for 30 days straight. Multimodal MRI was performed to detect brain tissue injuries, axonal microstructural damages, cerebral blood flow and intracranial vessels on the 30th day after BYHWD treatment. Proangiogenic factors, axonal/synaptic plasticity-related factors, energy transporters and adenosine monophosphate-activated protein kinase (AMPK) signal pathway were evaluated using western blot. Double immunofluorescent staining and western blot were applied to evaluate astrocytes and microglia polarization. RESULTS: Administration of BYHWD significantly alleviated infarct volume and brain tissue injuries and ameliorated microstructural damages, accompanied with improved axonal/synaptic plasticity-related factors, axonal growth guidance factors and decreased axonal growth inhibitors. Meanwhile, BYHWD remarkably improved cerebral blood flow, cerebral vascular signal and promoted the expression of proangiogenic factors. Particularly, treatment with BYHWD obviously suppressed astrocytes A1 and microglia M1 polarization accompanied with promoted astrocyte A2 and microglia M2 polarization. Furthermore, BYHWD effectively improved energy transporters. Especially, BYHWD markedly increased expression of phosphorylated AMPK, cyclic AMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) accompanied by inactivation of the NF-κB. CONCLUSION: Taken together, these findings identified that the beneficial roles of BYHWD on neurovascular remodeling were related to AMPK pathways -mediated energy transporters and NFκB/CREB pathways.


Subject(s)
Brain Ischemia , Drugs, Chinese Herbal , Ischemic Stroke , Stroke , Rats , Male , Animals , Rats, Sprague-Dawley , Astrocytes , Ischemic Stroke/drug therapy , Microglia , AMP-Activated Protein Kinases , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Stroke/drug therapy
4.
Transl Neurodegener ; 12(1): 58, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093327

ABSTRACT

BACKGROUND: The γ-aminobutyric acid (GABA) hypothesis posits a role of GABA deficiency in the central nervous system in the pathogenesis and progression of essential tremor (ET). However, the specific causative factor for GABA deficiency is not clear. The gut microbiota in mammals has recently been considered as a significant source of GABA. Furthermore, the GABA-based signals originating from the intestine can be transmitted to the brain through the "enteric nervous system-vagus nerve-brain" axis. However, the plausible contribution of gut microbiota to ET seems inspiring but remains obscure. METHODS: Fecal samples from patients with ET and healthy controls were examined by metagenomic sequencing to compare the composition of gut microbiota and the expression of genes involved in GABA biosynthesis. The impact of gut microbiota on ET was explored through transplantation of fecal microbiota from patients with ET into the murine ET model. Lactic acid bacteria producing high amounts of GABA were identified through whole-genome sequencing and ultra-performance liquid chromatography-tandem mass spectrometry. Subsequently, mice were treated with the high-GABA-producing strain Lactobacillus plantarum L5. Tremor severity, behavioral tests, pro-inflammatory cytokines, GABA concentration, and gut microbiota composition were examined in these mice. RESULTS: The gut microbiota of patients with ET demonstrated an impaired GABA-producing capacity and a reduced fecal GABA concentration. Transplantation of the gut microbiota from patients with ET induced an extension of tremor duration and impaired mobility in the murine model of ET. L5 exhibited an augmented GABA-producing capacity, with the De Man-Rogosa-Sharpe culture broth containing 262 mg/l of GABA. In addition, administration of L5 significantly decreased the tremor severity and enhanced the movement capability and grasping ability of ET mice. In vivo mechanistic experiments indicated that L5 reshaped the gut microbial composition, supplemented the mucosa-associated microbiota with GABA-producing capacity, increased the GABA concentrations in the cerebellum, and diminished inflammation in the central nervous system. CONCLUSIONS: These findings highlight that deficiency of GABA-producing gut microbes plays an essential role in the pathogenesis of ET and that L5 is a promising candidate for treating ET.


Subject(s)
Essential Tremor , Lactobacillus plantarum , Humans , Mice , Animals , Lactobacillus plantarum/genetics , Tremor , Bacteria , gamma-Aminobutyric Acid , Dietary Supplements , Mammals
5.
Int J Mol Sci ; 24(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298392

ABSTRACT

Oxidative stress can adversely affect the health status of the body, more specifically by causing intestinal damage by disrupting the permeability of the intestinal barrier. This is closely related to intestinal epithelial cell apoptosis caused by the mass production of reactive oxygen species (ROS). Baicalin (Bai) is a major active ingredient in Chinese traditional herbal medicine that has antioxidant, anti-inflammatory, and anti-cancer properties. The purpose of this study was to explore the underlying mechanisms by which Bai protects against hydrogen peroxide (H2O2)-induced intestinal injury in vitro. Our results indicated that H2O2 treatment caused injury to IPEC-J2 cells, resulting in their apoptosis. However, Bai treatment attenuated H2O2-induced IPEC-J2 cell damage by up-regulating the mRNA and protein expression of ZO-1, Occludin, and Claudin1. Besides, Bai treatment prevented H2O2-induced ROS and MDA production and increased the activities of antioxidant enzymes (SOD, CAT, and GSH-PX). Moreover, Bai treatment also attenuated H2O2-induced apoptosis in IPEC-J2 cells by down-regulating the mRNA expression of Caspase-3 and Caspase-9 and up-regulating the mRNA expression of FAS and Bax, which are involved in the inhibition of mitochondrial pathways. The expression of Nrf2 increased after treatment with H2O2, and Bai can alleviate this phenomenon. Meanwhile, Bai down-regulated the ratio of phosphorylated AMPK to unphosphorylated AMPK, which is indicative of the mRNA abundance of antioxidant-related genes. In addition, knockdown of AMPK by short-hairpin RNA (shRNA) significantly reduced the protein levels of AMPK and Nrf2, increased the percentage of apoptotic cells, and abrogated Bai-mediated protection against oxidative stress. Collectively, our results indicated that Bai attenuated H2O2-induced cell injury and apoptosis in IPEC-J2 cells through improving the antioxidant capacity through the inhibition of the oxidative stress-mediated AMPK/Nrf2 signaling pathway.


Subject(s)
Antioxidants , Hydrogen Peroxide , AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Apoptosis , Cell Line , Hydrogen Peroxide/toxicity , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Swine , Animals
6.
Front Cell Neurosci ; 17: 1125412, 2023.
Article in English | MEDLINE | ID: mdl-37051111

ABSTRACT

2,3,5,6-Tetramethylpyrazine (TMP) as an active ingredient extracted from a traditional Chinese herbal medicine Ligusticum chuanxiong Hort. has been proved to penetrate blood-brain barrier (BBB) and show neuroprotective effects on cerebral ischemia. However, whether TMP could regulate astrocytic reactivity to facilitate neurovascular restoration in the subacute ischemic stroke needs to be urgently verified. In this research, permanent occlusion of the middle cerebral artery (MCAO) model was conducted and TMP (10, 20, 40 mg/kg) was intraperitoneally administrated to rats once daily for 2 weeks. Neurological function was evaluated by motor deficit score (MDS). Magnetic resonance imaging (MRI) was implemented to analyze tissue injury and cerebral blood flow (CBF). Magnetic resonance angiography (MRA) was applied to exhibit vascular signals. Transmission electron microscopy (TEM) was performed to detect the neurovascular unit (NVU) ultrastructure. Haematoxylin and eosin (HE) staining was utilized to evaluate cerebral histopathological lesions. The neurogenesis, angiogenesis, A1/A2 reactivity, aquaporin 4 (AQP4) and connexin 43 (Cx43) of astrocytes were observed with immunofluorescent staining. Then FGF2/PI3K/AKT signals were measured by western blot. Findings revealed TMP ameliorated neurological functional recovery, preserved NVU integrity, and enhanced endogenous neurogenesis and angiogenesis of rats with subacute ischemia. Shifting A1 to A2 reactivity, suppressing excessive AQP4 and Cx43 expression of astrocytes, and activating FGF2/PI3K/AKT pathway might be potential mechanisms of promoting neurovascular restoration with TMP after ischemic stroke.

7.
Poult Sci ; 102(1): 102274, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36402045

ABSTRACT

The aims of this study were to investigate the effects of supplemental N-acetyl-l-cysteine (NAC) on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets. A total of 120, 12-wk-old, Hy-Line Brown hens were randomly separated into 4 groups with 6 replicates of 5 birds in each group for 21 d. The 4 treatments were as follows: the CON group and CN group were supplemented with basal diet or basal diet with 1 g/kg NAC, respectively; and the HS group and HSN group were heat-stressed groups supplemented with basal diet or basal diet with 1 g/kg NAC, respectively. The results indicated that the ovaries suffered pathological damage due to chronic heat stress and that NAC effectively ameliorated these changes. Compared with the HS group, antioxidant enzyme activities (including SOD, GSH-Px, CAT, and T-AOC) were enhanced, while the MDA contents and the expression levels of HSP70 were decreased in the HSN group. In addition, NAC upregulated the expression levels of HO-1, SOD2, and GST by upregulating the activity of Nrf2 at different time points to mitigate oxidative stress caused by heat exposure. Simultaneously, NAC attenuated chronic heat stress-induced NF-κB pathway activation and decreased the expression levels of the proinflammatory cytokines IL-8, IL-18, TNF-α, IKK-α, and IFN-γ. Cumulatively, our results indicated that NAC could ameliorate chronic heat stress-induced ovarian damage by upregulating the antioxidative capacity and reducing the secretion of proinflammatory cytokines.


Subject(s)
Acetylcysteine , Chickens , Animals , Female , Acetylcysteine/pharmacology , Acetylcysteine/metabolism , Chickens/physiology , Ovary/metabolism , Oxidative Stress , Antioxidants/metabolism , Inflammation/veterinary , Inflammation/metabolism , Heat-Shock Response , Cytokines/metabolism
8.
Zhen Ci Yan Jiu ; 47(7): 587-91, 2022 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-35880274

ABSTRACT

OBJECTIVE: To investigate the mechanism of the effect of acupuncture and moxibustion on improving liver injury by observing the changes of cysteine protease (Caspase) associated with hepatocyte apoptosis based on cisplatin (DDP) induced liver injury model mice. METHODS: Forty KM mice were randomly divided into control group, model group, acupuncture group and moxibustion group, with 10 mice in each group. The liver injury model was replicated by intraperitoneal injection of DDP. In the acupuncture group and the moxibustion group, acupuncture and moxibustion were performed at"Dazhui"(GV14), and bilateral "Ganshu"(BL18), "Shenshu"(BL23), and "Zusanli"(ST36), respectively, once per day for 5 d. General condition of mice in each group were observed;The activities of AST, ALT and GLDH in mice serum were detected by biochemical method. ELISA and Western blot assay were used to detect Caspase-3, Caspase-8 and Caspase-9 contents and protein expression in the liver tissues of each group of mice, respectively. RESULTS: Compared with the control group, the general condition of the mice in the model group was poorer, and the Caspase-3, Caspase-8 and Caspase-9 contents and protein expressions in liver tissues and the activities of AST, ALT and GLDH in serum were increased (P<0.05). Compared with the model group, the general condition of the mice in the acupuncture and moxibustion groups improved, and the Caspase-3, Caspase-8 and Caspase-9 contents and protein expressions in liver tissues and activities of AST, ALT and GLDH in serum were decreased (P<0.05). CONCLUSION: Acupuncture and moxibustion can reduce liver injury due to DDP chemotherapy by modulating the expression of apoptotic factors Caspase-3, Caspase-8 and Caspase-9 in liver tissues of DDP model mice and improving liver function, which may be one of the mechanisms of the effect of acupuncture and moxibustion to ameliorates liver injury after DDP chemotherapy.


Subject(s)
Acupuncture Therapy , Cysteine Proteases , Moxibustion , Acupuncture Points , Animals , Apoptosis , Caspase 3/genetics , Caspase 8/genetics , Caspase 9/genetics , Liver , Mice
9.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35682929

ABSTRACT

Cadmium (Cd) is a toxic heavy metal that can accumulate in the liver of animals, damaging liver function. Inflammation and oxidative stress are considered primary causes of Cd-induced liver damage. Selenium (Se) is an antioxidant and can resist the detrimental impacts of Cd on the liver. To elucidate the antagonism of Se on Cd against hepatocyte injury and its mechanism, duck embryo hepatocytes were treated with Cd (4 µM) and/or Se (0.4 µM) for 24 h. Then, the hepatocyte viability, oxidative stress and inflammatory status were assessed. The findings manifested that the accumulation of reactive oxygen species (ROS) and the levels of pro-inflammatory factors were elevated in the Cd group. Simultaneously, immunofluorescence staining revealed that the interaction between NOD-like receptor pyran domain containing 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) was enhanced, the movement of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm was increased and the inflammatory response was further amplified. Nevertheless, the addition of Se relieved the above-mentioned effects, thereby alleviating cellular oxidative stress and inflammation. Collectively, the results suggested that Se could mitigate Cd-stimulated oxidative stress and inflammation in hepatocytes, which might be correlated with the NLRP3 inflammasome and HMGB1/nuclear factor-κB (NF-κB) signaling pathway.


Subject(s)
HMGB1 Protein , Selenium , Animals , Cadmium/metabolism , Ducks , HMGB1 Protein/metabolism , Hepatocytes/metabolism , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Selenium/metabolism , Selenium/pharmacology
10.
World J Clin Cases ; 10(1): 35-42, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35071503

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a prevalent clinical autoimmune disease that is commonly treated with diclofenac and methotrexate. In recent years, the application of traditional Chinese medicine in RA has received widespread attention; it promotes blood circulation, strengthens the immune system, and eliminates evil. The sinomenine preparation of Zhingqeng Fengtongning is studied as a possible treatment for patients with RA. AIM: To explore the value of sinomenine injection into the articular cavity for the treatment of RA. METHODS: A total of 94 patients with RA treated from January 2019 to January 2021 were selected and divided into the study and control groups with 47 patients each using a simple random number table method. Both groups received conventional treatment with diclofenac sodium and methotrexate tablets. The control group received diproxone and lidocaine by intra-articular administration while the study group received an intra-articular administration of the sinomenine preparation of Zhengqing Fengning and lidocaine. χ 2 test was used to evaluate the therapeutic effect and synovial thickness, degree of pain through the visual analog scale (VAS), blood flow grade, arthroinflammatory indexes [rheumatoid factor (RF), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR)] before and after treatment in the two groups. RESULTS: The total effective rate of the study group (93.62%) was higher than that of the control group (78.72%) (P < 0.05). Before treatment, there were no significant differences between the two groups in terms of synovial thickness, VAS score, blood flow grading, levels of RF, and ESR (P > 0.05). After treatment, the synovial thickness and VAS score were significantly lower (P < 0.05) in the study group than in the control group (2.05 ± 0.59 mm vs 2.87 ± 0.64 mm and 2.11 ± 0.62 vs 2.90 ± 0.79 scores, respectively). The rate of blood flow at grade 0 in the study group (76.60%) was higher than that in the control group (57.45%), and the rate of blood flow at grade I (10.64%) was lower than that in the control group (31.91%) (P < 0.05). Furthermore, the levels of RF (55.61 ± 6.13 U/mL), CRP (11.43 ± 3.59 mg/L), and ESR (29.60 ± 5.56 mm/h) in the study group were lower than those in the control group (73.04 ± 9.23 U/mL, 15.07 ± 4.06 mg/L, 36.64 ± 6.10 mm/h, respectively) (P < 0.05). CONCLUSION: Sinomenine administration of Zhengqing Fengtongning in the articular cavity with conventional treatment of RA can improve ultrasonographic blood flow and synovial thickness, reduce pain, regulate inflammation, and enhance therapeutic effect.

11.
J Agric Food Chem ; 69(31): 8714-8725, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34323067

ABSTRACT

Upregulated de novo lipogenesis (DNL) plays a pivotal role in the progress of the nonalcoholic fatty liver disease (NAFLD). Cytoplasmic citrate flux, mediated by plasma membrane citrate transporter (SLC13A5), mitochondrial citrate carrier (SLC25A1), and ATP-dependent citrate lyase (ACLY), determines the central carbon source for acetyl-CoA required in DNL. Curcumin, a widely accepted dietary polyphenol, can attenuate lipid accumulation in NAFLD. Here, we first investigated the lipid-lowering effect of curcumin against NAFLD in oleic and palmitic acid (OPA)-induced primary mouse hepatocytes and high-fat plus high-fructose diet (HFHFD)-induced mice. Curcumin profoundly attenuated OPA- or HFHFD-induced hyperlipidemia and aberrant hepatic lipid deposition via modulating the expression and function of SLC13A5 and ACLY. The possible mechanism of curcumin on the citrate pathway was investigated using HepG2 cells, HEK293T cells transfected with human SLC13A5, and recombinant human ACLY. In OPA-stimulated HepG2 cells, curcumin rectified the dysregulated expression of SLC13A5/ACLY possibly via the AMPK-mTOR signaling pathway. Besides, curcumin also functionally inhibited both citrate transport and metabolism mediated by SLC13A5 and ACLY, respectively. These findings confirm that curcumin improves the lipid accumulation in the liver by blocking citrate disposition and hence may be used to prevent NAFLD.


Subject(s)
Curcumin , Non-alcoholic Fatty Liver Disease , Organic Anion Transporters , Symporters , ATP Citrate (pro-S)-Lyase/metabolism , Animals , Citric Acid , Curcumin/pharmacology , Dicarboxylic Acid Transporters , HEK293 Cells , Humans , Lipid Metabolism , Mice , Mitochondrial Proteins , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Symporters/metabolism
12.
J Therm Biol ; 98: 102927, 2021 May.
Article in English | MEDLINE | ID: mdl-34016350

ABSTRACT

The purpose of this study was to discuss the effects of N-acetyl-l-cysteine (NAC) on heat stress-induced oxidative stress and inflammation in the hypothalamus of hens in different periods. A total of 120 Hy-Line variety brown laying hens (12 weeks old) were randomly assigned to 4 groups with 6 replicates. The control group (C group) (22 ± 1 °C) received a basal diet, the NAC-treated group (N group) (22 ± 1 °C) received a basal diet with 1000 mg/kg NAC, and 2 heat-stressed groups (36 ± 1 °C for 10 h per day and 22 ± 1 °C for the remaining time) were fed a basal diet (HS group) or a basal diet with 1000 mg/kg NAC (HS + N group) for 21 consecutive days. The influence of NAC on histologic changes, oxidative stress and proinflammatory cytokine production was measured and analysed in hens with heat stress-induced hypothalamic changes. NAC effectively alleviated the hypothalamic morphological changes induced by heat stress. In addition, NAC attenuated the activity of the Nf-κB pathway activated by heat stress and decreased the expression of the proinflammatory cytokines IL-6, IL-18, TNF-α, IKK, and IFN-γ. In addition, NAC treatment regulated the expression of HO-1, GSH, SOD2 and PRDX3 by regulating the activity of Nrf2 at different time points to resist oxidative stress caused by heat exposure. In summary, dietary NAC may be an effective candidate for the treatment and prevention of heat stress-induced hypothalamus injury by preventing Nf-κB activation and controlling the Nrf2 pathway.


Subject(s)
Acetylcysteine/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Heat Stress Disorders/drug therapy , Hypothalamus/drug effects , Poultry Diseases/drug therapy , Acetylcysteine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens , Cytokines/genetics , Cytokines/metabolism , Dietary Supplements , Female , Heat Stress Disorders/genetics , Heat Stress Disorders/metabolism , Heat Stress Disorders/veterinary , Heat-Shock Response/drug effects , Hypothalamus/metabolism , Hypothalamus/pathology , I-kappa B Kinase/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress/drug effects , Oxidoreductases/genetics , Oxidoreductases/metabolism , Poultry Diseases/genetics , Poultry Diseases/metabolism , Poultry Diseases/pathology
13.
Environ Pollut ; 285: 117301, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34049137

ABSTRACT

Cadmium (Cd) is a harmful heavy metal that can cause many health problems, while selenium (Se) is an essential nutrient for organisms that can protect them from heavy metal-induced damage. To explore the effects of Se on Cd-induced mitophagy in the liver, forty 3-month-old New Zealand white rabbits (2-2.5 kg), half male and half female, were randomly divided into four groups: the Control group, the Se (0.5 mg/kg body weight (BW)) group, the Cd (1 mg/kg BW) group and the Se+Cd group. After 30 days, the toxicity from Cd in the liver was assessed in terms of the nuclear xenobiotic receptor (NXR) response, oxidative stress and mitophagy. It was found that Cd decreased the activities of CYP450 enzymes and antioxidant enzymes and increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) and also increased the consumption of reduced glutathione (GSH). Moreover, the mRNA levels of NXRs (CAR, PXR, AHR and Nrf2), some mitochondrial function factors (PGC-1α, Sirt1, Sirt3, Nrf1 and TFAM) and mitochondrial fusion factors (Mfn1, Mfn2 and OPA1) were downregulated, but the mRNA levels of other mitochondrial function factors (VDAC1, Cyt C and PRDX3), mitochondrial fission factors (Fis1 and MFF) and those in the PINK1/Parkin-mediated mitophagy pathway (p62, Bnip3 and LC3) were upregulated under Cd exposure. The protein expression levels of Nrf2, SOD2, PGC-1α, PINK1 and Parkin were consistent with the mRNA expression levels in the Cd group. Se alleviated the changes in the abovementioned factors induced by Cd. In conclusion, the results indicate that Cd can cause oxidative stress in rabbit livers by inhibiting NXRs and the antioxidation response leading to mitophagy, and these harmful changes caused by Cd can be alleviated by Se.


Subject(s)
Cadmium , Selenium , Animals , Cadmium/metabolism , Cadmium/toxicity , Female , Hydrogen Peroxide/metabolism , Liver/metabolism , Male , Mitophagy , Oxidative Stress , Rabbits , Selenium/metabolism , Xenobiotics/metabolism
14.
Int J Biol Macromol ; 182: 179-186, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33838185

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) play a key role in the regulation of metabolic homeostasis, inflammation, cellular growth, and differentiation. To further explore the potential role of PPARα in the energy homeostasis of fatty liver hemorrhagic syndrome (FLHS), we reported the prokaryotic expression and purification of chicken PPARα subunit protein, and successfully prepared a polyclonal antibody against PPARα recombinant protein. The 987 bp PPARα subunit genes were cloned into the pEASY-T3 clone vector. Then the plasmid PCR products encoding 329 amino acids were ligated to pEASY-Blunt E2 vector and transformed into BL21 to induce expression. The recombinant PPARα subunit protein, containing His-tag, was purified by affinity column chromatography using Ni-NTA affinity column. Rabbit antiserum was generated by using the concentration of recombinant PPARα subunit protein as the antigen. The results of western blotting showed that the antiserum can specifically recognize chicken endogenous PPARα protein. Immunohistochemistry and immunofluorescence showed that the PPARα mainly existed in the nucleus of hepatocytes, renal epithelial cells and hypothalamic endocrine nerve cells. More importantly, western blotting and real-time quantitative PCR indicated that FLHS significantly decreased the expression of PPARα.


Subject(s)
Antibodies/immunology , Fatty Liver/veterinary , Hemorrhage/veterinary , PPAR alpha/metabolism , Poultry Diseases/metabolism , Animals , Antigen-Antibody Reactions , Blotting, Western/methods , Cells, Cultured , Chickens , Fatty Liver/metabolism , Female , Hemorrhage/metabolism , Hepatocytes/metabolism , Hypothalamus/metabolism , Immunohistochemistry/methods , Kidney/metabolism , PPAR alpha/genetics , PPAR alpha/immunology , Syndrome
15.
Int J Biol Macromol ; 169: 513-520, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33385449

ABSTRACT

Liver kinase B1 (LKB1) is a member of the serine/threonine kinase family, which plays an indispensable role in the organism of animals. In the current study, the chicken LKB1 protein gene was amplified by PCR based on the primers and cDNA templates. Then, the cloning vector was constructed and the target gene was cloned. After that, the target gene was inserted into the expression vector to construct the recombinant plasmid. The recombinant plasmid was transformed into BL21 (DE3) host cells and the LKB1 recombinant proteins were successfully expressed by using Isopropyl-ß-D-thiogalactopyranoside (IPTG). Finally, purified LKB1 proteins were used as antigen and the rabbit-derived antiserums were collected. The antiserum titer determined by ELISA was not less than 1:128000. The results of Western blot suggested that the polyclonal antibody is highly specific to chicken LKB1 protein. Immunofluorescence indicated that the LKB1 protein is mainly expressed in the cytoplasm of liver, heart and hypothalamus cells of chicken. Our study showed that the LKB1 polyclonal antibodies produced by this method are effective and can be used to further study the role of LKB1 in the pathogenesis of chicken disease.


Subject(s)
Chickens/genetics , Chickens/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Antibodies/immunology , Antibody Specificity/immunology , Cloning, Molecular/methods , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Gene Expression/genetics , Genetic Vectors/genetics , Hypothalamus/metabolism , Immune Sera/immunology , Liver/metabolism , Myocardium/metabolism , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/genetics
16.
Acta Pharmacol Sin ; 42(6): 987-997, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33028985

ABSTRACT

Metabolic reprogramming is associated with NLRP3 inflammasome activation in activated macrophages, contributing to inflammatory responses. Tanshinone IIA (Tan-IIA) is a major constituent from Salvia miltiorrhiza Bunge, which exhibits anti-inflammatory activity. In this study, we investigated the effects of Tan-IIA on inflammation in macrophages in focus on its regulation of metabolism and redox state. In lipopolysaccharides (LPS)-stimulated mouse bone marrow-derived macrophages (BMDMs), Tan-IIA (10 µM) significantly decreased succinate-boosted IL-1ß and IL-6 production, accompanied by upregulation of IL-1RA and IL-10 release via inhibiting succinate dehydrogenase (SDH). Tan-IIA concentration dependently inhibited SDH activity with an estimated IC50 of 4.47 µM in LPS-activated BMDMs. Tan-IIA decreased succinate accumulation, suppressed mitochondrial reactive oxygen species production, thus preventing hypoxia-inducible factor-1α (HIF-1α) induction. Consequently, Tan-IIA reduced glycolysis and protected the activity of Sirtuin2 (Sirt2), an NAD+-dependent protein deacetylase, by raising the ratio of NAD+/NADH in activated macrophages. The acetylation of α-tubulin was required for the assembly of NLRP3 inflammasome; Tan-IIA increased the binding of Sirt2 to α-tubulin, and thus reduced the acetylation of α-tubulin, thus impairing this process. Sirt2 knockdown or application of Sirt2 inhibitor AGK-2 (10 µM) neutralized the effects of Tan-IIA, suggesting that Tan-IIA inactivated NLRP3 inflammasome in a manner dependent on Sirt2 regulation. The anti-inflammatory effects of Tan-IIA were observed in mice subjected to LPS challenge: pre-administration of Tan-IIA (20 mg/kg, ip) significantly attenuated LPS-induced acute inflammatory responses, characterized by elevated IL-1ß but reduced IL-10 levels in serum. The peritoneal macrophages isolated from the mice displayed similar metabolic regulation. In conclusion, Tan-IIA reduces HIF-1α induction via SDH inactivation, and preserves Sirt2 activity via downregulation of glycolysis, contributing to suppression of NLRP3 inflammasome activation. This study provides a new insight into the anti-inflammatory action of Tan-IIA from the respect of metabolic and redox regulation.


Subject(s)
Abietanes/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Inflammation/prevention & control , Macrophages/drug effects , Succinate Dehydrogenase/antagonists & inhibitors , Acetylation/drug effects , Animals , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides , Male , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 2/metabolism , Tubulin/metabolism
17.
Medicine (Baltimore) ; 99(48): e23417, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33235121

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the top 10 malignant tumors worldwide and poses a great threat to human life and health, the prevention and treatment of which has become the focus and difficulty of medical research. With its unique advantages, traditional Chinese medicine (TCM) is widely used in the prevention and treatment of postoperative recurrence and metastasis of GC as well as the improvement of patients' quality of life. The aim of this study is to elucidate the curative effect and the underlying mechanism of Yiqi Huayu Jiedu (YQHYJD) decoction. METHODS/DESIGN: This is a prospective, multicenter, randomized controlled trial continuing 3 years. Two hundred ninety-eight eligible patients will be randomly divided into 2 groups, the chemotherapy combined with placebo and the chemotherapy combined with YQHYJD group at a ratio of 1:1. All patients will receive the treatment for 6 months and follow up for 3 years. The primary outcomes are disease-free survival, and 1-year, 2-year, 3-year progression-free survival rate, while the secondary outcomes are tumor makers, TCM syndrome score, quality of life score, overall chemotherapy completion rate, intestinal flora diversity test, immune function (T, B lymphocyte subsets and NK cells) test. The Security index includes blood, urine and stool routine, electrocardiogram, liver function (ALT), and renal function (BUN, Scr). All of these outcomes will be analyzed at the end of the trial. DISCUSSION: This research will provide the valuable evidence for the efficacy and safety of Yiqi Huayu Jiedu decoction in postoperative GC. Furthermore, it will be helpful to form a higher level of evidence-based medical basis for TCM in the treatment of GC recurrence and metastasis. TRIAL REGISTRATION: ChiCTR2000039038.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Stomach Neoplasms/drug therapy , Biomarkers, Tumor/analysis , Chemotherapy, Adjuvant , Disease-Free Survival , Gastrointestinal Microbiome , Humans , Multicenter Studies as Topic , Neoplasm Metastasis/prevention & control , Neoplasm Recurrence, Local/prevention & control , Progression-Free Survival , Quality of Life , Randomized Controlled Trials as Topic , Stomach Neoplasms/surgery
18.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1462-1470, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32776662

ABSTRACT

BACKGROUND: Many countries are increasingly prohibiting the addition of antibiotics in livestock diets. Therefore, herb extracts have gradually drawn attention to substitute antibiotics. Our present study aimed to determine the effects of herbal extract mixture (HEM) in dietary on growth performance, organ weight, intestinal morphology and intestinal nutrient transporters in weaned pigs. METHODS: 27 piglets (Duroc × [Landrace × Yorkshire]; Body Weight (BW) = 5.99 ± 0.13 kg) were weaned at day 21 and randomly divided into three groups (n = 9 piglets/group). All piglets received a basal diet containing similar amounts of nutrients for 14 days. The three groups were the control (no additive), the antibiotics (375 mg/kg chlortetracycline, 20%, 500 mg/kg enramycin, 4%, 1,500 mg/kg oxytetracycline calcium, 50%) and the HEM group (1000 mg/kg extract mixture of golden-and-silver honeysuckle, huangqi, duzhong leaves and dangshen). After 14 d of treatment, we collected tissue samples to measure organ weight, intestinal parameters, intestinal morphology, digestive enzyme activities and intestinal mRNA expression of nutrient transporters. RESULTS: The HEM group had no effects on growth performance and organ weight of weaned pigs. But compared with the control group, both HEM and antibiotics improved intestinal morphology, and HEM elevated the expression of nutrient transporters in ileum (SLC6A9, SLC15A1, and SLC5A1). HEM significantly decreased the activities of maltase in ileum and the ratio of small intestinal weight to BW than control group. CONCLUSIONS: These results indicate benefit effects of the supplementation of HEM in diet, including modulating intestinal morphology and increasing the mRNA expression of nutrients transporters. These findings suggest that HEM provides novel insights into a variety of herbal extract mixtures to replace antibiotics in animal production.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dietary Supplements , Intestines/drug effects , Plant Extracts/pharmacology , Swine/growth & development , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Anti-Bacterial Agents/administration & dosage , Diet/veterinary , Gastrointestinal Contents/chemistry , Gene Expression Regulation/drug effects , Heart/anatomy & histology , Heart/drug effects , Intestines/anatomy & histology , Kidney/anatomy & histology , Kidney/drug effects , Liver/anatomy & histology , Liver/drug effects , Organ Size , Purines , Spleen/anatomy & histology , Spleen/drug effects , Stomach/anatomy & histology , Stomach/drug effects
19.
Biol Trace Elem Res ; 197(1): 167-174, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31811574

ABSTRACT

The purpose of this study was to evaluate the effects of excessive molybdenum (Mo) on renal function and oxidative stress in goats. Twenty-seven healthy goats were randomly allotted in three groups and were fed deionized water to which sodium molybdate [(NH4)6Mo7O24·4H2O] was added at different doses of 0, 15, and 45 mg Mo/(kg·BW) for 50 days, respectively. The results indicated that white blood cell (WBC) counts were significantly increased (P < 0.05), while red blood cell (RBC) counts, hemoglobin (HGB), and mean corpuscular hemoglobin concentration (MCH) were tended to decrease with the increasing of the experimental period in high-Mo group compared with the control group. Besides, blood urea nitrogen (BUN) and creatinine (CREA) contents in serum were increased (P < 0.05) in both groups supplemented with molybdenum. Meanwhile, contents of copper (Cu) from the both experimental groups were significantly decreased (P < 0.05), while contents of zinc (Zn) and iron (Fe) were increased (P < 0.05) in serum. The contents of Cu were significantly increased (P < 0.05), while the contents of zinc (Zn) and iron (Fe) did not obviously change (P > 0.05) in the kidney. In addition, the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) significantly decreased (P < 0.05) in the mitochondria, whereas malondialdehyde (MDA) and nitric oxide synthase (NOS) expression significantly increased (P < 0.05). Collectively, these results indicated that excess Mo exposure could induce secondary Cu deficiency and oxidative stress in the kidney, which finally undermine the renal function of goats.


Subject(s)
Goats , Molybdenum , Animals , Antioxidants , Kidney , Mitochondria , Molybdenum/toxicity , Oxidative Stress
20.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4573-4580, 2019 Nov.
Article in Chinese | MEDLINE | ID: mdl-31872650

ABSTRACT

In this research,we explored the effect of three groups of water treatments,including severe drought(the corresponding water content of cultivated substrate 5%-10%),moderate drought(45%-50%) and control(85%-90%),and different drought stress time(15,30,45 d) on the glandular trichome density(TD),stomatal density(SD) and volatile exudates of Schizonepeta tenuifolia.The results showed that there were two kinds of glandular trichomes on the surface of S. tenuifolia leaves: peltate and capitate glandular trichomes. The density of capitate glandular trichomes(CTD) was higher than that of peltate glandular trichomes(PTD). Both CTD and PTD on the abaxial surface of leaf were higher than those on the adaxial surface. Under severe drought stress,the CTD and SD were higher than the other two treatments. Under the same stress time,the biomass and leaf surface area of S. tenuifolia decreased with the deepening of stress degree. As the stress time prolonged,the surface area of leaves and biomass gradually increased,and the TD and SD decreased. The most abundant compound in volatile exudates of S. tenuifolia was pulegone. Under drought stress,the relative content of pulegone decreased,and the relative content of other monoterpenoids such as D-limonene and menthone increased. The n-hexadeconic acid and 2-methyl-1-hexadecanol were detected only at the stress of 15 d,while menthone was detected at the stress of 30 d and45 d. Drought stress affected the leaf growth and secondary metabolism of S. tenuifolia.


Subject(s)
Droughts , Lamiaceae , Plant Exudates , Trichomes , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL