Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Inherit Metab Dis ; 38(3): 391-403, 2015 May.
Article in English | MEDLINE | ID: mdl-25526709

ABSTRACT

Pyruvate oxidation defects (PODs) are among the most frequent causes of deficiencies in the mitochondrial energy metabolism and represent a substantial subset of classical mitochondrial diseases. PODs are not only caused by deficiency of subunits of the pyruvate dehydrogenase complex (PDHC) but also by various disorders recently described in the whole pyruvate oxidation route including cofactors, regulation of PDHC and the mitochondrial pyruvate carrier. Our own patients from 2000 to July 2014 and patients identified by a systematic survey of the literature from 1970 to July 2014 with a pyruvate oxidation disorder and a genetically proven defect were included in the study (n=628). Of these defects 74.2% (n=466) belong to PDHC subunits, 24.5% (n=154) to cofactors, 0.5% (n=3) to PDHC regulation and 0.8% (n=5) to mitochondrial pyruvate import. PODs are underestimated in the field of mitochondrial diseases because not all diagnostic centres include biochemical investigations of PDHC in their routine analysis. Cofactor and transport defects can be missed, if pyruvate oxidation is not measured in intact mitochondria routinely. Furthermore deficiency of the X-chromosomal PDHA1 can be biochemically missed depending on the X-inactivation pattern. This is reflected by an increasing number of patients diagnosed recently by genetic high throughput screening approaches. PDHC deficiency including regulation and import affect mainly the glucose dependent central and peripheral nervous system and skeletal muscle. PODs with combined enzyme defects affect also other organs like heart, lung and liver. The spectrum of clinical presentation of PODs is still expanding. PODs are a therapeutically interesting group of mitochondrial diseases since some can be bypassed by ketogenic diet or treated by cofactor supplementation. PDHC kinase inhibition, chaperone therapy and PGC1α stimulation is still a matter of further investigations.


Subject(s)
Iron-Sulfur Proteins/metabolism , Pyruvate Dehydrogenase Complex Deficiency Disease/diagnosis , Pyruvate Dehydrogenase Complex/metabolism , Thiamine Pyrophosphate/metabolism , Thioctic Acid/metabolism , Energy Metabolism , Female , Humans , Iron-Sulfur Proteins/classification , Male , Oxidation-Reduction , Pyruvate Dehydrogenase Complex/classification , Pyruvate Dehydrogenase Complex Deficiency Disease/drug therapy , Pyruvate Dehydrogenase Complex Deficiency Disease/genetics , Thiamine Pyrophosphate/classification , Thioctic Acid/classification
2.
Mol Genet Metab ; 113(4): 301-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25458521

ABSTRACT

Thiamine pyrophosphokinase (TPK) produces thiamine pyrophosphate, a cofactor for a number of enzymes, including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase. Episodic encephalopathy type thiamine metabolism dysfunction (OMIM 614458) due to TPK1 mutations is a recently described rare disorder. The mechanism of the disease, its phenotype and treatment are not entirely clear. We present two patients with novel homozygous TPK1 mutations (Patient 1 with p.Ser160Leu and Patient 2 with p.Asp222His). Unlike the previously described phenotype, Patient 2 presented with a Leigh syndrome like non-episodic early-onset global developmental delay, thus extending the phenotypic spectrum of the disorder. We, therefore, propose that TPK deficiency may be a better name for the condition. The two cases help to further refine the neuroradiological features of TPK deficiency and show that MRI changes can be either fleeting or progressive and can affect either white or gray matter. We also show that in some cases lactic acidosis can be absent and 2-ketoglutaric aciduria may be the only biochemical marker. Furthermore, we have established the assays for TPK enzyme activity measurement and thiamine pyrophosphate quantification in frozen muscle and blood. These tests will help to diagnose or confirm the diagnosis of TPK deficiency in a clinical setting. Early thiamine supplementation prevented encephalopathic episodes and improved developmental progression of Patient 1, emphasizing the importance of early diagnosis and treatment of TPK deficiency. We present evidence suggesting that thiamine supplementation may rescue TPK enzyme activity. Lastly, in silico protein structural analysis shows that the p.Ser160Leu mutation is predicted to interfere with TPK dimerization, which may be a novel mechanism for the disease.


Subject(s)
Mutation , Nervous System Diseases/genetics , Thiamin Pyrophosphokinase/deficiency , Thiamin Pyrophosphokinase/genetics , Acidosis, Lactic , Amino Acid Sequence , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging , Male , Models, Molecular , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Phenotype , Protein Conformation , Protein Multimerization , Thiamin Pyrophosphokinase/chemistry , Thiamin Pyrophosphokinase/metabolism , Thiamine/administration & dosage , Thiamine/therapeutic use , Thiamine Pyrophosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL