Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Antioxid Redox Signal ; 40(7-9): 433-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37265154

ABSTRACT

Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid ß-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.


Subject(s)
Mitochondrial Diseases , Non-alcoholic Fatty Liver Disease , Selenium , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Fish Oils/pharmacology , Fish Oils/metabolism , Selenium/pharmacology , Selenium/metabolism , PPAR alpha/genetics , Oxidoreductases/metabolism , Oxidative Stress , Mitochondrial Diseases/metabolism
2.
Biochem Pharmacol ; 198: 114973, 2022 04.
Article in English | MEDLINE | ID: mdl-35189109

ABSTRACT

Arsenite, a well-established human carcinogen and toxic compound, promotes the formation of mitochondrial superoxide (mitoO2-) via a Ca2+-dependent mechanism, in which an initial stimulation of the inositol 1, 4, 5-trisphosphate receptor (IP3R) is followed by the activation of the ryanodine receptor (RyR), critical for providing Ca2+ to the mitochondria. We now report that, under the same conditions, arsenite triggers endoplasmic reticulum (ER) stress and a threefold increase in ER oxidoreductin 1α (ERO1 α) levels in proliferating U937 cells. EN460, an inhibitor of ERO1 α, recapitulated all the effects associated with RyR inhibition or downregulation, including prevention of RyR-induced Ca2+ accumulation in mitochondria and the resulting O2-. formation. Quantitatively similar results were obtained in inhibitor studies performed in terminally differentiated wild type C2C12 cells. Moreover, ERO1 α knockout C2C12 myotubes responded to arsenite as their wild type counterpart supplemented with EN460. As a final note, arsenite enhanced the expression of ERO1 α via a mechanism mediated by Ca2+ release from both the IP3R and RyR. We therefore conclude that arsenite activates a positive feedback amplification cycle between Ca2+ levels and ERO1 α in the ER, by which IP3R-dependent Ca2+ induces ERO1 α and ERO1 α promotes Ca2+ release via RyR, thereby amplifying the initial Ca2+ load and causing the mitochondrial accumulation of the cation, critical for mitoO2- formation.


Subject(s)
Calcium Signaling , Membrane Glycoproteins , Oxidoreductases , Ryanodine Receptor Calcium Release Channel , Arsenites/adverse effects , Calcium/metabolism , Humans , Membrane Glycoproteins/metabolism , Mitochondria/metabolism , Oxidoreductases/metabolism , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , U937 Cells
3.
Cell Death Differ ; 28(1): 123-138, 2021 01.
Article in English | MEDLINE | ID: mdl-32661288

ABSTRACT

SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease. To investigate the pathophysiological pathways in SEPN1-RM, we performed metabolic studies, calcium and ATP measurements, super-resolution and electron microscopy on in vivo and in vitro models of SEPN1 deficiency as well as muscle biopsies from SEPN1-RM patients. Mouse models of SEPN1 deficiency showed marked alterations in mitochondrial physiology and energy metabolism, suggesting that SEPN1 controls mitochondrial bioenergetics. Moreover, we found that SEPN1 was enriched at the mitochondria-associated membranes (MAM), and was needed for calcium transients between ER and mitochondria, as well as for the integrity of ER-mitochondria contacts. Consistently, loss of SEPN1 in patients was associated with alterations in body composition which correlated with the severity of muscle weakness, and with impaired ER-mitochondria contacts and low ATP levels. Our results indicate a role of SEPN1 as a novel MAM protein involved in mitochondrial bioenergetics. They also identify a systemic bioenergetic component in SEPN1-RM and establish mitochondria as a novel therapeutic target. This role of SEPN1 contributes to explain the fatigue and core lesions in skeletal muscle as well as the body composition abnormalities identified as part of the SEPN1-RM phenotype. Finally, these results point out to an unrecognized interplay between mitochondrial bioenergetics and ER homeostasis in skeletal muscle. They could therefore pave the way to the identification of biomarkers and therapeutic drugs for SEPN1-RM and for other disorders in which muscle ER-mitochondria cross-talk are impaired.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Muscle Proteins/metabolism , Muscular Diseases/metabolism , Selenoproteins/metabolism , Adolescent , Adult , Animals , Calcium/metabolism , Child , Endoplasmic Reticulum/genetics , Energy Metabolism , Female , Homeostasis , Humans , Male , Mice , Mice, Knockout , Middle Aged , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Proteins/genetics , Muscular Diseases/genetics , Muscular Diseases/pathology , Oxidation-Reduction , Selenoproteins/genetics , Young Adult
4.
Mol Cell ; 48(1): 39-51, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22981861

ABSTRACT

Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1ß, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H(2)O(2)-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy.


Subject(s)
Ascorbic Acid/metabolism , Endoplasmic Reticulum/metabolism , Glycoproteins/metabolism , Oxidoreductases/metabolism , Scurvy/etiology , Scurvy/metabolism , Animals , Ascorbic Acid/pharmacology , Cells, Cultured , Connective Tissue/metabolism , Connective Tissue/pathology , Disease Models, Animal , Disulfides/metabolism , Female , Glycoproteins/deficiency , Glycoproteins/genetics , Male , Mice , Mice, Mutant Strains , Mutation , Oxidation-Reduction , Oxidoreductases/deficiency , Oxidoreductases/genetics , Peroxiredoxins/deficiency , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Procollagen/metabolism , Protein Folding , Protein Processing, Post-Translational/drug effects , Scurvy/genetics , Scurvy/pathology , Sulfenic Acids/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL