Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Bot ; 106(3): 453-468, 2019 03.
Article in English | MEDLINE | ID: mdl-30901496

ABSTRACT

PREMISE OF THE STUDY: Polyploids possess unique attributes that influence their environmental tolerance and geographic distribution. It is often unknown, however, whether cytotypes within mixed-ploidy populations are also uniquely adapted and differ in their responses to environmental change. Here, we examine whether diploids and hexaploids from a single mixed-ploidy population of Solidago altissima differ in plasticity and potential response to natural selection under conditions simulating climate change. METHODS: Clonal replicates of diploid and hexaploid genotypes were grown in a randomized split-plot design under two temperature (+1.9°C) and two watering treatments (-13% soil moisture) implemented with open-top passive chambers placed under rainout shelters. Physiological, phenological, morphological traits, and a fitness correlate, reproductive biomass, were measured and compared among treatments. KEY RESULTS: Differences in traits suggest that diploids are currently better adapted to low- water availability than hexaploids. Both ploidy levels had adaptive plastic responses to treatments and are predicted to respond to selection, but often for different traits. Water availability generally had a stronger effect than temperature, but for some traits the effect of water depended on temperature. CONCLUSIONS: Diploid and hexaploid S. altissima may maintain fitness in the short term through adaptive plasticity and evolution depending on which traits are important in a warmer, drier environment. Hexaploids may be at a disadvantage compared to diploids because fewer traits were heritable. Our results underscore the importance of studying combinations of climate variables that are predicted to change simultaneously.


Subject(s)
Adaptation, Physiological , Climate Change , Genetic Variation , Selection, Genetic , Solidago/physiology , Diploidy , Polyploidy , Solidago/genetics
SELECTION OF CITATIONS
SEARCH DETAIL