Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 259(Pt 2): 129232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191104

ABSTRACT

Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.


Subject(s)
Ambrosia , Hypersensitivity , Ambrosia/genetics , Antigens, Plant/genetics , Ecosystem , Allergens/genetics , Allergens/chemistry , Pollen/genetics , Chromosomes
2.
Mol Ther ; 30(1): 105-118, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34174443

ABSTRACT

Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.


Subject(s)
Gene Editing , Hearing Loss , Animals , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/genetics , Hearing , Hearing Loss/genetics , Hearing Loss/therapy , Humans , Mice , RNA, Guide, Kinetoplastida
SELECTION OF CITATIONS
SEARCH DETAIL