Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochem Biophys Res Commun ; 522(4): 862-868, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31806372

ABSTRACT

Ebola virus (EBOV), pathogen of Ebola hemorrhagic fever (EHF), is an enveloped filamental RNA virus. Recently, the EHF crisis occurred in the Democratic Republic of the Congo again highlights the urgency for its clinical treatments. However, no Food and Drug Administration (FDA)-approved therapeutics are currently available. Drug repurposing screening is a time- and cost-effective approach for identifying anti-EBOV therapeutics. Here, by combinatorial screening using pseudovirion and minigenome replicon systems we have identified several FDA-approved drugs with significant anti-EBOV activities. These potential candidates include azithromycin, clomiphene, chloroquine, digitoxin, epigallocatechin-gallate, fluvastatin, tetrandrine and tamoxifen. Mechanistic studies revealed that fluvastatin inhibited EBOV pseudovirion entry by blocking the pathway of mevalonate biosynthesis, while the inhibitory effect of azithromycin on EBOV maybe due to its intrinsic cationic amphiphilic structure altering the homeostasis of later endosomal vesicle similar as tamoxifen. Moreover, based on structure and pathway analyses, the anti-EBOV activity has been extended to other family members of statins, such as simvastatin, and multiple other cardiac glycoside drugs, some of which exhibited even stronger activities. More importantly, in searching for drug interaction, we found various synergy between several anti-EBOV drug combinations, showing substantial and powerful synergistic against EBOV infection. In conclusion, our work illustrates a successful and productive approach to identify new mechanisms and targets for treating EBOV infection by combinatorial screening of FDA-approved drugs.


Subject(s)
Antiviral Agents/analysis , Antiviral Agents/pharmacology , Combinatorial Chemistry Techniques , Drug Approval , Drug Evaluation, Preclinical , Ebolavirus/drug effects , Azithromycin/pharmacology , Cardiac Glycosides/pharmacology , Cell Line , Cholesterol/biosynthesis , Drug Synergism , Ebolavirus/physiology , Fluvastatin/pharmacology , Humans , Mevalonic Acid/metabolism , Models, Biological , Surface-Active Agents/chemistry , Virion/drug effects , Virion/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
2.
EBioMedicine ; 24: 189-194, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29033372

ABSTRACT

Zika virus (ZIKV) has become a global public health emergency due to its rapidly expanding range and its ability to cause severe congenital defects such as microcephaly. However, there are no FDA-approved therapies or vaccines against ZIKV infection. Through our screening of viral entry inhibitors, we found that chloroquine (CQ), a commonly used antimalarial and a FDA-approved drug that has also been repurposed against other pathogens, could significantly inhibit ZIKV infection in vitro, by blocking virus internalization. We also demonstrated that CQ attenuates ZIKV-associated morbidity and mortality in mice. Finally, we proved that CQ protects fetal mice from microcephaly caused by ZIKV infection. Our methodology of focusing on previously identified antivirals in screens for effectiveness against ZIKV proved to be a rapid and efficient means of discovering new ZIKV therapeutics. Selecting drugs that were previously FDA-approved, such as CQ, also improves the likelihood that they may more quickly reach stages of clinical testing and use by the public.


Subject(s)
Chloroquine/administration & dosage , Microcephaly/prevention & control , Zika Virus Infection/drug therapy , Animals , Cell Line , Chlorocebus aethiops , Chloroquine/pharmacology , Disease Models, Animal , Drug Approval , Drug Evaluation, Preclinical , Humans , Mice , Microcephaly/mortality , Microcephaly/virology , Vero Cells , Virus Internalization/drug effects , Zika Virus/drug effects , Zika Virus/physiology , Zika Virus Infection/complications , Zika Virus Infection/mortality
SELECTION OF CITATIONS
SEARCH DETAIL