Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Toxicol Res (Camb) ; 13(2): tfae057, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623091

ABSTRACT

Objective: The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), called Atractylodes macrocephala rhizome (AMR) and known by its traditional name Bai Zhu, is a prominent Chinese herbal medicine employed for preventing miscarriage. However, our previous study revealed that high dosages of AMR administered during pregnancy could cause embryotoxicity but the specific embryotoxic components and their underlying mechanisms remain unclear. This study aimed to screen and identify the potential embryotoxic components of AMR. Methods: The AMR extracts and sub-fractions were analyzed by thin layer chromatography and subsequently screened by in vitro mouse limb bud micromass and mouse whole embryo culture bioassays. The embryotoxic fractions from AMR were further evaluated in vivo using a pregnant mouse model. The structures of the potential embryotoxic components were analyzed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Results: In vitro and in vivo bioassays revealed that AMR glycoside-enriched sub-fractions (AMR-A-IIa and AMR-A-IIb) exhibited potential embryotoxicity. These sub-fractions, when administered to pregnant animals, increased the incidence of stillbirth and congenital limb malformations. MS spectrometry analysis identified cycasin derivatives in both sub-fractions, suggesting their possible role in the observed limb malformations. However, further experiments are necessary to validate this hypothesis and to elucidate the underlying mechanisms. Conclusions: Our study provides significant scientific evidence on the pharmacotoxicity of AMR, which is important for the safe clinical application of commonly used Chinese herbal medicines during pregnancy.

2.
J Ethnopharmacol ; 321: 117437, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37981116

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale Kimura & Migo (DEN) is a traditional medicine in China since Han dynasty. Decoction of its stem is often used in the treatment of Type-II diabetes (T2D), which is a typical metabolic disease accompanied with the impaired metabolic function of blood glucose and lipid. AIM OF THE STUDY: Our study aimed to investigate the role of gut microbiota in differentiating DEN from different sources and its related pathway in the alleviation of metabolic syndromes induced by T2D. MATERIALS AND METHODS: The aqueous extracts of four commercially available Dendrobium (DEN-1∼4) were prepared and screened through an in-vitro fermentation system. Based on their alterations in monosaccharide composition and short chain fatty acids (SCFA) formation during fermentation with db/db faecal fluid, one DEN extract was selected for further in vivo verification. The selected Dendrobium (DEN-4) was orally administered to db/db mice for 16 days once daily at the dosage of 200 mg/kg followed by evaluating its effect on blood glucose level, liver function and intestinal microenvironment including alterations of intestinal integrity and gut microbiota composition. In addition, liver metabolomics analysis was employed to reveal the related metabolic pathways. RESULTS: Different extent of SCFA formation and utilization of monosaccharides were observed for the extracts of four DEN from different sources with a negative correlation between SCFA level and the ratio of Utilized glucose/Utilized mannose observed in the in-vitro fermentation system with db/db faecal fluid. DEN-4 with the highest SCFA formation during the in-vitro fermentation was selected and exhibited significantly hypoglycaemic effect in db/db mice with the alleviation of hepatic steatosis and impaired lipid homeostasis. Further mechanistic studies revealed that orally administered DEN-4 could improve the intestinal integrity of db/db mice via elevating their tight junction protein (ZO-1 and Occludin) expression in the colon and improve the diversity of gut microbiota with enhanced formation of SCFA. Moreover, metabolomics and KEGG pathway analysis of liver tissues suggested that the alleviated metabolic syndrome in db/db mice by DEN-4 might possibly be achieved through activation of PPAR pathway. CONCLUSION: Our current study not only revealed the potential of gut microbiota in differentiating DEN from different sources, but also demonstrated that DEN exhibited its beneficial effect on the T2D induced metabolic syndrome possibly through enhancement of intestinal integrity and activation of PPAR pathway via gut-liver axis in db/db mice.


Subject(s)
Dendrobium , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Metabolic Syndrome , Mice , Animals , Blood Glucose/metabolism , Metabolic Syndrome/drug therapy , Fermentation , Peroxisome Proliferator-Activated Receptors/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains , Fatty Acids, Volatile/analysis , Diabetes Mellitus, Type 2/drug therapy , Monosaccharides
3.
Eur J Pharmacol ; 958: 175947, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37659689

ABSTRACT

OBJECTIVE: To reveal the core mechanism of berberine (BBR) in the treatment of diabetic retinopathy (DR), by using Four-dimensional independent data acquisition (4D-DIA) proteomics combined bioinformatics analysis with experimental validation. METHODS: DR injury model was established by injecting streptozotocin intraperitoneally. At 8 weeks after BBR administration, optical coherence tomography (OTC) photos and Hematoxylin-eosin staining from retina in each group were performed, then the retina was collected for 4D-DIA quantitative proteomics detection. Moreover, difference protein analysis, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI) network, as well as molecular docking was performed, respectively. In the part of experiment, Western blot (WB) and immunofluorescent staining was used to confirm the change and distribution of carbonic anhydrase 1 (CA1), one of the most important molecules from quantitative PCR detection. Lastly, RNA knockdown was used to determine the crucial role of CA1 in retinal pigment epithelial cells (RPEs) administrated with berberine. RESULTS: OCT detection showed that the outer nucleus, inner layer and outer accessory layer of RPEs were thinned in DR group, compared with in sham one, while they were thickened after berberine administration, when compared with in DR group. 10 proteins were screened out by using proteomic analysis and Venny cross plot, in which, denn domain containing 1A (DENND1A) and UTP6 small subunit processome component (UTP6) was down-regulated, while ATPase copper transporting alpha (ATP7A), periplakin (PPL), osteoglycin (OGN), nse1 Homolog (NSMCE1), membrane metalloendopeptidase (MME), lim domain only 4 (LMO4), CA1 and fibronectin 1 (FN1) was up-regulated in DR group, and the BBR treatment can effectively reverse their expressions. PPI results showed that 10 proteins shared interactions with each other, but only ATP7A, FN1 and OGN exhibited directly associated with each other. Moreover, we enlarged the linked relation up to 15 genes in network, based on 10 proteins found from proteomics detection, so as to perform deep GO and KEGG analysis. As a result, the most important biological process is involving rRNA processing; the most important cell component is small subunit processor; the most important molecular function is Phospholipid binding; the KEGG pathway was Ribosome biogenesis in eukaryotes. Moreover, molecular docking showed that LMO4, ATP7A, PPL, NSMCE1, MME, CA1 could form a stable molecular binding pattern with BBR. Of these, the mRNA expression of CA1, PPL and ATP7A and the protein level of CA1 was increased in DR, and decreased in BBR group. Lastly, CA1 RNA knockdown confirmed the crucial role of CA1 in RPE administered with BBR. CONCLUSION: The present findings confirmed the role of BBR in DR treatment and explained associated molecular network mechanism, in which, CA1 could be considered as a crucial candidate in the protection of RPEs with berberine treatment.

4.
Phytomedicine ; 109: 154567, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610120

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with high metastasis and lethality. Arrestin domain-containing 4 (ARRDC4) is involved in inhibiting cancer glycolytic phenotypes. Brusatol (BR), extracted from Bruceae Fructus, exerts good anti-cancer effects against a number of cancers. PURPOSE: In the present study, we aimed to explore the efficacy of BR on inhibiting CRC metastasis and elucidate the underlying mechanisms involving the upregulation of the ARRDC4 expression. METHODS: Cell viability, colony formation, wound healing and transwell assay were used to detect the anti-proliferative and anti-metastatic effects of BR against CRC in vitro. Microarray analysis was performed to find out differential genes in CRC cells after treatment with BR. Analysis of the CRC patients tumor samples and GEPIA database were first conducted to identify the expression of ARRDC4 on CRC. Stable overexpression and knockdown of ARRDC4 CRC cells were established by lentiviral transfection. The role of ARRDC4 in mediating the anti-metastatic effects of BR on CRC was measured using qRT-PCR, western blotting, immunohistochemical and immunofluorescence analysis. Orthotopic xenograft and pulmonary metastasis mouse models of CRC were established to determine the anti-cancer and anti-metastatic effects of ARRDC4 and BR. RESULTS: BR markedly suppressed the cell proliferation, migration, invasion and inhibited tumor growth and tumor metastasis. Microarray analysis demonstrated that BR treatment markedly increased the gene expression of ARRDC4 in CRC cells. ARRDC4 was significantly repressed in CRC in the clinical samples and GEPIA analysis. ARRDC4 overexpression plus BR produced better inhibitory effects on CRC metastasis than BR treatment alone, while ARRDC4 knockdown could partially eliminate the inhibitory effects of BR against CRC metastasis. BR exerted anti-metastatic effects against CRC via upregulating ARRDC4 and inhibiting epithelial-mesenchymal transition (EMT) processing through modulating PI3K/Hippo pathway. CONCLUSION: This study reported for the first time that BR is a potent ARRDC4 agonist, and is worthy of further development into a new therapeutic strategy for CRC.


Subject(s)
Colorectal Neoplasms , Signal Transduction , Animals , Mice , Humans , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis
5.
J Ethnopharmacol ; 301: 115801, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36216199

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The processed lateral root of Aconitum carmichaelii Debx. is known as Fuzi, an extensively used Traditional Chinese Medicine to treat cardiovascular diseases, rheumatism arthritis, bronchitis, pains, and hypothyroidism, etc. Although Chinese Pharmacopeia regulates the safe clinical dosage of Fuzi at 3-15 g/person/day, such recommendation not only lacks bench evidence but also does not differentiate Fuzi with different processing types, such as Heishunpian and Paofupian. AIM OF THE STUDY: The current study aimed to 1) determine No-Observed-Adverse-Effect-Levels of Heishunpian and Paofupian in rats and 2) investigate the related toxicity mechanisms for their safe clinical use. MATERIALS AND METHODS: After giving clinically relevant dosing regimen of Heishunpian/Paofupian to rats, we conducted toxicity assessments including ECG monitoring, histopathological changes and serum biomarkers to detect organ injury. Metabolomic study in the liver revealed changes in endogenous metabolite levels after two-week treatment of Fuzi preparations or its corresponding six toxic alkaloids mixtures. RESULTS: The NOAEL for both bolus and two-week treatments of Heishunpian and Paofupian in rats was designated to be 7.5 g/kg and 15 g/kg, respectively. Corresponding recommended doses in humans were 7.5-25 g/person/day for Heishunpian and 15-50 g/person/day for Paofupian. Metabolic profiles revealed more significant alterations in endogenous substances from rats receiving the two Fuzi preparations than their corresponding toxic alkaloids mixtures. Upregulation of bile acid pathway could be responsible for Fuzi induced liver injury. CONCLUSIONS: Compared to the current maximum recommended dose, our suggested upper limit of guided dose for Heishunpian was comparable, whereas that for Paofupian could be further elevated. Both C19-diterpenoid alkaloids and co-occurring components in Fuzi preparations contributed to their hepatotoxicity via upregulation of bile acid pathway.


Subject(s)
Aconitum , Alkaloids , Chemical and Drug Induced Liver Injury , Diterpenes , Drugs, Chinese Herbal , Humans , Rats , Animals , Aconitum/toxicity , Drugs, Chinese Herbal/pharmacology , Alkaloids/metabolism , Diterpenes/metabolism , Medicine, Chinese Traditional/adverse effects , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/etiology , Plant Roots/toxicity
6.
Front Pharmacol ; 13: 1017741, 2022.
Article in English | MEDLINE | ID: mdl-36225587

ABSTRACT

Polygoni Multiflori Radix (PMR) is a commonly used traditional Chinese medicine in clinical practice, while adverse effects of hepatotoxicity related to PMR have been frequently reported. The clinical case reports indicated that PMR hepatotoxicity could occur under both overdose medication/long-term exposure and low doses with short-duration (idiosyncratic) conditions. The combination treatment with emodin and 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside (TSG), two major PMR components, was reported to contribute to PMR hepatotoxicity after long-term treatment. However, the role of the combination treatment of these two components in PMR-induced idiosyncratic liver injury has not been clearly clarified. In this study, the LPS-mediated inflammatory stress model rats were adopted to explore the idiosyncratic liver injury induced by the bolus combination treatment with emodin and TSG. After a bolus oral administration with TSG (165 mg/kg), emodin (5 mg/kg) or their combination in both normal and LPS-mediated inflammatory stress model rats, the systemic/hepatic concentrations of emodin, emodin glucuronides and bile acids were determined; the hepatotoxicity assessments were conducted via monitoring histopathological changes and liver injury biomarkers (ALT and AST). Moreover, the protein expressions of bile acid homeostasis- and apoptosis-related proteins were examined. No liver damage was observed in the normal rats after a bolus dose with the individual or combination treatment, while the bolus combination treatment with emodin and TSG induced liver injury in the LPS-mediated inflammatory stress model rats, evidenced by the elevated plasma levels of alanine aminotransferase (∼66%) and aspartate aminotransferase (∼72%) accompanied by severe inflammatory cell infiltration and apoptotic hepatocytes in liver tissue. Moreover, such combination treatment at a bolus dose in the LPS-mediated inflammatory stress model rats could significantly elevate the hepatic TBA levels by about 45% via up-regulating the hepatic protein expression levels of bile acid synthesis enzymes and inhibiting that of bile acid efflux transporters and the expression levels of apoptosis-related proteins. Our study for the first time proved the major contribution of the combination treatment with emodin and TSG in PMR-induced idiosyncratic liver injury.

7.
Front Pharmacol ; 13: 903485, 2022.
Article in English | MEDLINE | ID: mdl-35814228

ABSTRACT

Purpose: Diabetic retinopathy (DR) is a serious complication of diabetes mellitus, which nearly happens to all the diabetic sufferers. This study aims to identify the preliminary molecular regulation involved in the therapeutic efficacy of astragaloside IV (AS- IV) for DR. Methods: Diabetic rat models were established and treated with AS-IV. Optical coherence tomography (OCT) and Hematoxylin-eosin (HE) staining was employed to demonstrate the histopathological changes. The main targets of AS-IV were identified by searching from public databases of traditional Chinese medicine (GeneCards, PharmMapper and Swiss Target Prediction). Besides, disease targets of DR were also obtained by integrated data from GEO datasets and predicted from public databases. Protein-protein interaction (PPI) network was constructed by Cytoscape with overlapping genes and 10 core targets were selected, on which Gene Ontology (GO) along with Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted. The interaction between AS-IV and these crucial genes were analyzed using molecular docking. RT-qPCR and western blot were used to verify the expression variation of core targets. Results: OCT imaging and HE staining demonstrated that AS-IV administration significantly increased retinal thickness in diabetic rats, obviously alleviating DR induced histopathological changes as well as elevated blood glucose levels. 107 common targets of AS-IV and DR were determined after intersection. PPI network analysis filtered 10 hub genes potentially targeted by AS-IV, including VEGFA, CASP3, HIF1α, STAT3, CTNNB1, SRC, AKT1, EGFR, IL1ß and IL6. Enrichment analysis indicated that these genes were mainly enriched in biological processes like T cell activation, epithelial cell proliferation and protein kinase B signaling, and involved in oxidative stress, apoptosis and inflammation-related pathways. The molecular docking prediction suggested that AS-IV exhibited stable binding to these core targets. In addition, mRNA levels of core targets in diabetic rats were differentially expressed before and after AS-IV treatment. Western blot further revealed that AS-IV treatment elevated DR-depressed protein levels of PI3K and AKT. Conclusion: Our study elucidated the effect of AS-IV in attenuating retinopathy induced by diabetes in rats and preliminarily unveiled the therapeutic efficacy of AS-IV in the treatment of DR might be attributed to activation of PI3K-AKT signaling pathway.

8.
J Integr Med ; 20(5): 402-415, 2022 09.
Article in English | MEDLINE | ID: mdl-35750623

ABSTRACT

BACKGROUND: Traditional Chinese medicine (TCM) is becoming a popular complementary approach in pediatric oncology. However, few or no meta-analyses have focused on clinical studies of the use of TCM in pediatric oncology. OBJECTIVE: We explored the patterns of TCM use and its efficacy in children with cancer, using a systematic review, meta-analysis and data mining study. SEARCH STRATEGY: We conducted a search of five English (Allied and Complementary Medicine Database, Embase, PubMed, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov) and four Chinese databases (Wanfang Data, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, and VIP Chinese Science and Technology Periodicals Database) for clinical studies published before October 2021, using keywords related to "pediatric," "cancer," and "TCM." INCLUSION CRITERIA: We included studies which were randomized controlled trials (RCTs) or observational clinical studies, focused on patients aged < 19 years old who had been diagnosed with cancer, and included at least one group of subjects receiving TCM treatment. DATA EXTRACTION AND ANALYSIS: The methodological quality of RCTs and observational studies was assessed using the six-item Jadad scale and the Effective Public Healthcare Panacea Project Quality Assessment Tool, respectively. Meta-analysis was used to evaluate the efficacy of combining TCM with chemotherapy. Study outcomes included the treatment response rate and occurrence of cancer-related symptoms. Association rule mining (ARM) was used to investigate the associations among medicinal herbs and patient symptoms. RESULTS: The 54 studies included in this analysis were comprised of RCTs (63.0%) and observational studies (37.0%). Most RCTs focused on hematological malignancies (41.2%). The study outcomes included chemotherapy-induced toxicities (76.5%), infection rate (35.3%), and response, survival or relapse rate (23.5%). The methodological quality of most of the RCTs (82.4%) and observational studies (80.0%) was rated as "moderate." In studies of leukemia patients, adding TCM to conventional treatment significantly improved the clinical response rate (odds ratio [OR] = 2.55; 95% confidence interval [CI] = 1.49-4.36), lowered infection rate (OR = 0.23; 95% CI = 0.13-0.40), and reduced nausea and vomiting (OR = 0.13; 95% CI = 0.08-0.23). ARM showed that Radix Astragali, the most commonly used medicinal herb (58.0%), was associated with treating myelosuppression, gastrointestinal complications, and infection. CONCLUSION: There is growing evidence that TCM is an effective adjuvant therapy for children with cancer. We proposed a checklist to improve the quality of TCM trials in pediatric oncology. Future work will examine the use of ARM techniques on real-world data to evaluate the efficacy of medicinal herbs and drug-herb interactions in children receiving TCM as a part of integrated cancer therapy.


Subject(s)
Complementary Therapies , Drugs, Chinese Herbal , Adult , Child , China , Combined Modality Therapy , Data Mining , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional/methods , Observational Studies as Topic , Randomized Controlled Trials as Topic , Young Adult
9.
Phytomedicine ; 103: 154247, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35716539

ABSTRACT

BACKGROUND: The concurrent use of conventional drugs and herbal medicines is becoming popular among patients with cancer. However, the potential risk of herb-drug interactions (HDI) remains under-addressed in the literature. Previous reviews have mainly focused on the prevalence of interactions, with less attention paid to the methods used by pharmacoepidemiological studies on evaluating HDI. This scoping review aims to summarize the existing pharmacoepidemiological studies that evaluate HDI using real-world data and to identify gaps to be addressed in future research. METHODS: A comprehensive search was performed in nine English- and Chinese-language databases from their inception to May 2021. Gray literature and manual searches were conducted to identify additional studies. The recommended components of the pharmacoepidemiological studies and key findings related to HDI were summarized. The proportion (%) of patients with cancer at risk of HDI was estimated by combining data from eligible studies. RESULTS: Twenty-eight studies were included in the review. More than half of these studies were cross-sectional studies (n = 18, 64.3%), followed by retrospective cohort studies (n = 5, 17.9%) and prospective cohort studies (n = 2, 7.1%). The three cancer drugs most commonly studied for their interaction potential with herbs were tamoxifen (n = 11, 39.3%), cyclophosphamide (n = 6, 21.4%), and paclitaxel (n = 6, 21.4%). Most cross-sectional studies identified potential HDI using tertiary databases and primary literature searches. Conversely, prospective and retrospective studies mainly investigated actual clinical outcomes, such as adverse events and secondary cancer occurrences. Most interaction outcomes identified using real-world data did not lead to negative clinical consequences. Collectively, 45.4% of herbal medicine users of the included studies were found to be at risk of HDI. We infer from this review that the common limitations of these studies were limited sample size, lack of data on herbal medicine use and details of HDI, and lack of evidence of HDI. Based on the study limitations, several recommendations to enrich the data sources and optimize the study designs were proposed. CONCLUSIONS: There is a high demand for pharmacoepidemiological research on HDI, considering the increasing popularity of herbal medicine among patients with cancer. It is anticipated that emerging real-world data in this field can guide the development of safe and effective approaches to integrative oncology.


Subject(s)
Herb-Drug Interactions , Plants, Medicinal , Humans , Phytotherapy , Prospective Studies , Retrospective Studies
10.
Phytomedicine ; 101: 154099, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35489323

ABSTRACT

BACKGROUND: Gut microbiota alterations could influence the metabolism of administered drugs, leading to their altered pharmacokinetics and pharmacodynamics. Despite that metformin and berberine has individually demonstrated their impacts on hypoglycemic activities and gut microbiota alterations in diabetic mice, investigation regarding the impact of their combination treatment in diabetic treatment has never been conducted. PURPOSE: Our current study was proposed aiming to investigate the effect of combination use of metformin with berberine on hypoglycemic activity and identify the possible intestinal bacteria involved in their microbiota-medicated drug-drug interactions in db/db mice. STUDY DESIGN: Pharmacodynamics interactions between metformin and berberine were evaluated in six groups of db/db mice (db, M250, B250, B125, B250+M250, and B125+M250) with its wild type (WT) as control to receive 14 days treatment of vehicle, metformin at 250 mg/kg, berberine at 250/125 mg/kg, and metformin (250 mg/kg) 2 h after dosing berberine (250/125 mg/kg). METHODS: On day 13, insulin tolerance test (ITT) was conducted. On day 15, fasting serum samples were obtained for insulin concentration determination followed by intraperitoneal glucose tolerance test (ipGTT), homeostatic model assessment for insulin resistance (HOMA-IR) calculation, and feces collection for microbial 16S rRNA sequencing analyses. In addition, metformin steady state plasma concentrations on day 15 were measured by validated LC-MS/MS method. RESULTS: Combination treatment of metformin with berberine could further reduce in blood glucose in comparison to that of db/db diabetic control. Further microbial 16S rRNA sequencing analyses revealed that gut microbiota compositions were significantly changed with the abundance of Proteobacteria and Verrucomicrobia altered the most after metformin and berberine co-treatment compared to their monotherapy. In addition, steady state metformin concentrations in their combination treatment were significantly higher than that from metformin monotherapy. CONCLUSION: Co-administration of metformin (250 mg/kg) with berberine (125 mg/kg) could not only further improve insulin sensitivity, but also demonstrate different alterations on gut microbial communities than that of their individual treatment in db/db mice.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Insulin Resistance , Metformin , Animals , Berberine/pharmacology , Berberine/therapeutic use , Chromatography, Liquid , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/pharmacology , Metformin/pharmacology , Metformin/therapeutic use , Mice , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry
11.
Drug Metab Dispos ; 50(1): 86-94, 2022 01.
Article in English | MEDLINE | ID: mdl-34697080

ABSTRACT

An HERB-Drug Interaction (HDI) database is a structured data collection method for HDI information extracted from scattered literatures for quick retrieval. Our review summarized the ten currently available HDI databases, including those databases comprising HDI on the market. A detailed comparison on the scope of monographs, including the nature of content extracted from the original literature and user interfaces of these databases, was performed, and the number of references of fifty popular herbs in each HDI database was counted and presented in a heatmap to give users an intuitive understanding of the focuses of different HDI databases. Since it is well known that the development and maintenance of databases need continuous investment of capital and manpower, the sustainability of these databases was also reviewed and compared. Recently, artificial intelligence (AI) technologies, especially Natural Language Processing (NLP), have been applied to screen specific topics from massive articles and automatically identify the names of drugs and herbs in the literature. However, its application on the labor-intensive extraction and evaluation of HDI-related experimental conditions and results from literature remains limited due to the scarcity of these HDI data and the lack of well-established annotated datasets for these specific NLP recognition tasks. In view of the difficulties faced by current HDI databases and potential expansion of AI application in HDI database development, we propose a standardized format for data reporting and use of Concept Unique Identifier (CUI) for medical terms in the literature to accelerate the structured data collection. SIGNIFICANCE STATEMENT: The worldwide popularity of botanical and/or traditional medicine products has raised safety concerns due to potential HDI. However, the publicly available HDI databases are mostly outdated or incomplete. Through our review of the currently available HDI databases, a clear understanding of the key issues could be obtained and possible solutions to overcome the labour-intensive extraction as well as professional evaluation of information in HDI database development are proposed.


Subject(s)
Databases, Factual/standards , Herb-Drug Interactions , Plant Preparations/pharmacology , Animals , Artificial Intelligence , Humans , Medicine, Traditional , Pharmaceutical Preparations/metabolism , Plant Preparations/pharmacokinetics
12.
Planta Med ; 88(11): 950-959, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34521133

ABSTRACT

Although Polygoni Multiflori Radix (PMR) has been widely used as a tonic and an anti-aging remedy for centuries, the extensively reported hepatotoxicity and potential kidney toxicity hindered its safe use in clinical practice. To better understand its toxicokinetics, the current study was proposed, aiming to evaluate the biodistributions of the major PMR components including 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside (TSG), emodin, emodin-8-O-ß-D-glucopyranoside (EMG) and physcion as well as their corresponding glucuronides following bolus and multiple oral administrations of PMR to rats. Male Sprague-Dawley rats received a bolus dose or 21 days of oral administrations of PMR concentrated granules at 4.12 g/kg (equivalent to 20.6 g/kg raw material). Fifteen minutes after bolus dose or the last dose on day 21, rats were sacrificed and the blood, liver, and kidney were collected for the concentration determination of both parent form and glucuronides of TSG, emodin, EMG, and physcion by HPLC-MS/MS. Among all the tested analytes, TSG, EMG, EMG glucuronides in liver and TSG, EMG, as well as all the glucuronides of these analytes in the kidney demonstrated the most significant accumulation after multiple doses. Moreover, the levels of the parent analytes were all significantly higher in liver and kidney in comparison to their plasma levels. Strong tissue binding of all four analytes and accumulation of TSG, EMG, and EMG glucuronides in the liver and TSG, EMG, as well as the glucuronides of all four analytes in the kidney after multiple dosing of PMR were considered to be associated with its toxicity.


Subject(s)
Emodin , Polygonum , Administration, Oral , Animals , Kidney , Liver , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
13.
BMC Complement Med Ther ; 21(1): 199, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34261471

ABSTRACT

BACKGROUND: Our current study aimed to evaluate the effect of an Glechoma hederacea extract (Hitrechol®) in normal rats and gallstone diseased mice to explore its underlying mechanisms. Normal rats and C57BL/6 mice with/without cholesterol gallstone were used in this study. METHODS: To monitor the effect of Hitrechol® on bile secretion, bile flow rates at 15 min interval until 2 h post-dosing in normal rats treated with vehicle and Hitrechol® were compared using multiple t-test with a p < 0.05 considered as statistically significant different. To further evaluate the effect of Hitrechol® against the development of gallstone in lithogenic diet treated mice, mice were treated with vehicle or Hitrechol® (QD-once daily or TID-three times daily) for 3 weeks followed by comparing the levels of bile composition among the treatment groups. In addition, the anti-oxidative biomarkers in liver and anti-inflammatory biomarkers in serum were detected and compared among all the treatment groups to evaluate the hepato-protective effect of Hitrechol®. The obtained levels of biomarkers and bile composition were compared among different treatment groups using one-way ANOVA tests followed by Tukey's multiple comparisons with p < 0.05 considered as statistically significant. RESULTS: Despite no significant impact on the bile flow rate, Hitrechol® TID treatment dramatically decreased size and amount of gallstone crystals and total cholesterol level (p < 0.05), as well as total bile acid (p < 0.05) and several types of bile acid (p < 0.05) levels in gallstone disease model mice. Hitrechol® TID treatment could significantly decrease the frequencies of hepatocyte necrosis and lipid aggregation notably as well as increase the antioxidant enzyme level (p < 0.05) in the liver. CONCLUSIONS: Our findings for the first time demonstrated the beneficial effect of Hitrechol® against gallstone via its litholytic, liver-protective and antioxidant activities.


Subject(s)
Antioxidants/pharmacology , Gallstones/prevention & control , Lamiaceae/metabolism , Plant Extracts/pharmacology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Rats , Rodentia
14.
J Ethnopharmacol ; 269: 113711, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33352242

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: EGb 761 is a standardized dry extract of Ginkgo biloba L. leaves traditionally used by Eastern Asia and has been associated with beneficial effects on neurodegeneration disorders, including Alzheimer's disease. AIM OF THE STUDY: Since beneficial interactions between EGb 761 and donepezil have been observed in previous clinical studies, the current study was proposed aiming to further explore related mechanisms from both pharmacokinetics and pharmacodynamics aspects. MATERIALS AND METHODS: Pharmacodynamic interactions were studied in scopolamine-induced cognitive impairment rats received two-weeks treatment of vehicle, EGb 761 and/or donepezil by the Morris water maze test and ex vivo evaluation of biomarkers of cholinergic transmission and oxidative stress in rat brain. In the meantime, pharmacokinetic profiles of donepezil and bilobalide were obtained and compared among all treatment groups. In addition, impact of the bioavailable EGb 761 components on donepezil brain penetration was evaluated with the hCMEC/D3 cell monolayer model. RESULTS: Scopolamine-induced rats with co-treatment of EGb 761 and donepezil had significantly improved cognitive function in the Morris water maze test with increased brain levels of superoxide dismutase and decreased brain levels of acetylcholinesterase and malondialdehyde than that with treatment of only EGb 761 or donepezil. Despite such beneficial pharmacodynamics outcomes, the two-week co-treatment of EGb 761 and donepezil did not alter the plasma pharmacokinetics and brain uptake of donepezil or bilobalide, which was further verified in the hCMEC/D3 monolayer model. CONCLUSION: Co-administration of EGb 761 and donepezil exerted better anti-amnestic effect via further enhanced pro-cholinergic and antioxidative effects of EGb 761 or donepezil in scopolamine-induced cognitive impairment rat without alteration in their systemic/brain exposure.


Subject(s)
Amnesia/drug therapy , Antioxidants/pharmacology , Cholinergic Agents/pharmacology , Donepezil/pharmacology , Nootropic Agents/pharmacology , Plant Extracts/pharmacology , Acetylcholinesterase/drug effects , Animals , Antioxidants/pharmacokinetics , Antioxidants/therapeutic use , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Cell Line , Cholinergic Agents/blood , Cholinergic Agents/pharmacokinetics , Cholinergic Agents/therapeutic use , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cyclopentanes/blood , Cyclopentanes/pharmacokinetics , Cyclopentanes/pharmacology , Cyclopentanes/therapeutic use , Disease Models, Animal , Donepezil/blood , Donepezil/pharmacokinetics , Donepezil/therapeutic use , Drug Therapy, Combination , Furans/blood , Furans/pharmacokinetics , Furans/pharmacology , Furans/therapeutic use , Ginkgo biloba , Ginkgolides/blood , Ginkgolides/pharmacokinetics , Ginkgolides/pharmacology , Ginkgolides/therapeutic use , Humans , Male , Malondialdehyde/metabolism , Maze Learning/drug effects , Nootropic Agents/blood , Nootropic Agents/pharmacokinetics , Nootropic Agents/therapeutic use , Plant Extracts/blood , Plant Extracts/pharmacokinetics , Plant Extracts/therapeutic use , Rats, Wistar , Superoxide Dismutase/metabolism
15.
Toxins (Basel) ; 12(11)2020 11 21.
Article in English | MEDLINE | ID: mdl-33233441

ABSTRACT

Radix Polygoni Multiflori (RPM), a traditional Chinese medicine, has been used as a tonic and an anti-aging remedy for centuries. However, its safe and effective application in clinical practice could be hindered by its liver injury potential and lack of investigations on its hepatotoxicity mechanism. Our current review aims to provide a comprehensive overview and a critical assessment of the absorption, distribution, metabolism, excretion of RPM, and their relationships with its induced liver injury. Based on the well-reported intrinsic liver toxicity of emodin, one of the major components in RPM, it is concluded that its plasma and liver concentrations could attribute to RPM induced liver injury via metabolic enzymes alteration, hepatocyte apoptosis, bile acids homeostasis disruption, and inflammatory damage. Co-administered 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside in RPM and other drugs/herbs could further aggravate the hepatotoxicity of emodin via enhancing its absorption and inhibiting its metabolism. To ensure the safe clinical use of RPM, a better understanding of the toxicokinetics and effect of its co-occurring components or other co-administered drugs/herbs on the pharmacokinetics of emodin is warranted.


Subject(s)
Chemical and Drug Induced Liver Injury , Fallopia multiflora , Plant Preparations/pharmacokinetics , Plant Preparations/toxicity , Plant Roots , Animals , Humans , Plant Preparations/chemistry
16.
J Ethnopharmacol ; 262: 113151, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32736050

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Salvia Miltiorrhiza (Danshen) and Radix Pueraria Lobate (Gegen) are officially listed in the Chinese Pharmacopoeia and have long been used together as a Compound Chinese Traditional Medicine (CCTM) for treatment of coronary heart diseases, which are often co-administered with aspirin or warfarin to patients suffering from cardiovascular diseases. AIM OF STUDY: Since significant pharmacokinetic and pharmacodynamic interactions between Danshen-Gegen (DG) formula and aspirin/warfarin have been observed in our previous rat studies, the current study was proposed aiming to further verify such pharmacokinetic and pharmacodynamic interactions in healthy human subjects and explore related mechanisms. MATERIALS AND METHODS: A 5-day, multiple dose, five-session clinical trial has been carried out (n = 14) with 2-week washout periods between sessions, during which the subjects would receive different combinations of the medications. Plasma samples were collected for pharmacokinetic evaluation, and whole blood samples were collected for pharmacodynamic evaluation. In addition, an in-vitro mechanistic study is conducted to investigate the role of danshensu on the anti-thrombotic and anti-platelet aggregation effects of warfarin and aspirin respectively. RESULTS: Significant pharmacokinetic and pharmacodynamic herb-drug interactions were observed in healthy human subjects. pharmacokinetically, co-administration of DG with aspirin or warfarin could lead to a moderately increased AUC0→t of aspirin and a decreased AUC0→t of 7-hydroxyl warfarin respectively. The systemic exposure of danshensu (DSS, the marker component of DG) would be significantly increased after co-administration with warfarin. Pharmacodynamically, a reduction in systemic thromboxane B2 concentration was noticed after administration of DG with aspirin, which could be associated with the increased systemic exposure of aspirin and the synergistic effect of danshensu, aspirin and salicylic acid on cyclooxygenase (COX) inhibition. An offset on the warfarin induced soluble thrombomodulin induction was observed after its co-administration with DG, which could be partially attributed to the COX-2 inhibition effect of danshensu. CONCLUSION: Our results indicated that co-administration of DG with aspirin/warfarin would lead to significant pharmacokinetic and pharmacodynamic herb-drug interactions in healthy human subjects.


Subject(s)
Aspirin/blood , Drugs, Chinese Herbal/metabolism , Herb-Drug Interactions/physiology , Pueraria , Salvia miltiorrhiza , Warfarin/blood , Adult , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/blood , Anticoagulants/administration & dosage , Anticoagulants/blood , Aspirin/administration & dosage , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/isolation & purification , Healthy Volunteers , Humans , Male , Middle Aged , Pilot Projects , Warfarin/administration & dosage , Young Adult
17.
Eur J Pharm Sci ; 154: 105515, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32798718

ABSTRACT

Although EGb 761, the standardized dry extract of Ginkgo biloba leaves, exhibited numerous pharmacological activities and widely used in Asia, European and North America, the quality control of its dosage forms such as tablet mainly relies on monitoring the contents of the active marker components, namely quercetin, kaempferol, isorhamnetin, bilobalide, ginkgolide A, ginkgolide B and ginkgolide C. So far, the in vitro dissolution profiles of EGb761 tablet were barely used to monitor its quality and how these dissolution profiles correlate with their in vivo pharmacokinetics was not known. Thus, the present study was proposed aiming to 1) develop the in vitro-in vivo correlations (IVIVCs) for the marker components in EGb 761 tablet; 2) identify the in vivo relevant dissolution media for the marker components in EGb 761 tablet based on the established IVIVCs. The content analyses of the marker components in EGb 761 tablet was first carried out. Then, the dissolution profiles were further obtained using paddle method of United States Pharmacopeia for bilobalide, ginkgolides A, and ginkgolide B, that have previously reported human plasma pharmacokinetics after EGb 761 tablet oral administrations. About seven different media including 0.1 M hydrochloric acid (HCl), acetate buffer, H2O, fasted state simulated gastric fluid (FaSSGF), fasted state simulated intestinal fluid version 2 (FaSSIF-V2), fed state simulated intestinal fluid version 2 (FeSSIF-V2), and sequential medium (0.1 M HCl for 2 h with pH adjusted to 7 for another 2 h) were tested in the current investigation. The obtained in vitro dissolution profiles of bilobalide, ginkgolides A and ginkgolide B from EGb 761 tablet were first fitted with four dissolution models, namely Weibull, Double Weibull, Hill and Makoid-Banakar, to obtain the best-fit model for each component in each medium. The human plasma concentration versus time profiles of the above three components were then inputted into the Phoenix WinNonlin IVIVC Toolkit to obtain their in vivo absorption profiles using numerical deconvolution. The best-fit dissolution profiles of each marker component in the seven studied media were further used to correlate with its obtained in vivo absorption profile by the linear correlation models to establish the corresponding IVIVCs in each studied medium. Finally, the best in vivo correlated medium for each investigated marker component was selected based on their adjusted correlation coefficients, Akaike Information Criterion (AIC) and Schwarz's Bayesian Criterion (SBC) values. As a result, the dissolution profiles of bilobalide, ginkgolide A, ginkgolide B from EGb 761 tablet in 0.1 M HCl, FaSSGF, FaSSIF-V2 demonstrated the best correlation with their in vivo absorption profiles, respectively. Our current studies for the first time applied the concept of IVIVC to EGb 761 tablet and successfully identified the in vivo relevant dissolution media for its three active marker components to improve its quality control.


Subject(s)
Ginkgo biloba , Plant Extracts , Bayes Theorem , Ginkgolides , Healthy Volunteers , Humans , Plant Extracts/pharmacokinetics , Solubility
18.
Chin Med ; 15: 75, 2020.
Article in English | MEDLINE | ID: mdl-32724333

ABSTRACT

BACKGROUND: Lingzhi and Yunzhi are medicinal mushrooms commonly used with cytotoxic chemotherapy in cancer patients in Asian countries. The current systematic review aims to identify potential pharmacokinetic or pharmacodynamic interactions from the existing literature to ensure their effective and safe combination usage in cancer patients. METHODS: A systematic search was conducted on nine major Chinese and English databases, including China Journal Net, Allied and Complementary Medicine Database, and Ovid MEDLINE®, etc., to identify clinical, animal, and in-vitro studies that evaluate the effect of combined use of Lingzhi or Yunzhi with cytotoxic drugs. The Jadad scale was used to assess the quality of clinical studies. RESULTS: This search identified 213 studies, including 77 clinical studies that reported on the combined use of cytotoxic drugs with Yunzhi (n = 56) or Lingzhi (n = 21). Majority of these clinical studies demonstrated modest methodological quality. In clinical practice, the most commonly used cytotoxic drugs with Lingzhi were cisplatin, 5-fluorouracil (5-FU) and paclitaxel, whereas Tegafur/uracil (UFT)/Tegafur, 5-FU, and mitomycin were the ones used more often with Yunzhi. Only two clinical pharmacokinetic studies were available showing no significant interactions between Polysaccharide K (PSK) and Tegafur. From the pharmacodynamic interactions perspective, combination uses of Yunzhi/Lingzhi with cytotoxic drugs in clinical practice could lead to improvement in survival (n = 31) and quality of life (n = 17), reduction in tumor lesions (n = 22), immune modulation (n = 38), and alleviation of chemotherapy-related side effects (n = 14) with no reported adverse effects. CONCLUSION: Our findings suggest that the clinical combination use of Lingzhi or Yunzhi with cytotoxic drugs could enhance the efficacy and ameliorate the adverse effects of cytotoxic drugs, leading to improved quality of life in cancer patients. More high quality clinical studies including pharmacokinetic herb-drug interactions studies are warranted to verify these observations and mechanisms involved. Based on the high quality clinical data, pharmacoepidemiology methods and bioinformatics or data mining could be adopt for further identification of clinical meaningful herb-drug interactions in cancer therapies.

19.
J Pharm Anal ; 10(3): 253-262, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32612872

ABSTRACT

In traditional Chinese medicine herbs (TCM), including Radix Salviae Miltiorrhizae (Danshen), Radix Puerariae Lobatae (Gegen), Radix Angelicae Sinensis (Danggui), and Rhizoma Chuanxiong (Chuanxiong) are widely used for the prevention and treatment of cardiovascular diseases and also often co-administered with Western drugs as a part of integrative medicine practice. Carboxylesterase 1 (CES1) plays a pivotal role in the metabolisms of pro-drugs. Since (S)-2-(2-(6-dimethylamino)-benzothiazole)-4,5-dihydro-thiazole-4-carboxylate (NLMe) has recently been identified by us as a selective CES1 bioluminescent sensor, we developed a rapid method using this substrate for the direct measurement of CES1 activity in rats. This bioluminescence assay was applied to determine CES1 activity in rat tissues after a two-week oral administration of each of the four herbs noted above. The results demonstrated the presence of CES1 enzyme in rat blood and all tested tissues with much higher enzyme activity in the blood, liver, kidney and heart than that in the small intestine, spleen, lung, pancreas, brain and stomach. In addition, the four herbs showed tissue-specific effects on rat CES1 expression. Based on the CES1 biodistribution and its changes after treatment in rats, the possibility that Danshen, Gegen and Danggui might alter CES1 activities in human blood and kidney should be considered. In summary, a selective and sensitive bioluminescence assay was developed to rapidly evaluate CES1 activity and the effects of orally administered TCMs in rats.

20.
J Ethnopharmacol ; 243: 112097, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31325600

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to Traditional Chinese Medicine theory, influenza is categorized as a warm disease or Wen Bing. The Wen Bing formulas, such as Yin-Qiao-San and Sang-Ju-Yin, are still first-line herbal therapies in combating variant influenza virus. To continue our study on the pharmacokinetic and pharmacodynamic interactions between Wen Bing formulas and oseltamivir (OS), the first-line western drug for the treatment of influenza, further interactions between OS and the eight single herbs and their relevant marker components from Wen Bing formulas were investigated in the current study. AIM OF STUDY: To establish an in-vitro screening platform for investigation of the potential anti-influenza herbs/herbal components that may have pharmacokinetic and pharmacodynamic interactions with OS. MATERIALS AND METHODS: To screen potential inhibition on OS hydrolysis, 1 µg/mL of OS is incubated with herbs/herbal components in diluted rat plasma, microsomes and human recombinant carboxylesterase 1(hCE1) under optimized conditions. MDCK-WT and MDCK-MDR1 cell lines are utilized to identify potential modification on P-gp mediated transport of OS by herbs/herbal components. Caco-2 cells with and without Gly-Sar inhibition are performed to study the uptake of OS via PEPT1 transporters. Modification on OAT3 mediated transport is verified by the uptake of OS on HEK293-MOCK/HEK293-OAT3 cells. Anti-virus effects were evaluated using plaque reduction assay on H1N1 and H3N2 viruses. Potential pharmacokinetic and pharmacodynamic interaction between OS (30 mg/kg) and the selected herb, Radix Scutellariae (RS), at 300-600 mg/kg were carried out on rats. All samples are analyzed by an LC/MS/MS method for the contents of OS and OSA. A mechanistic PK model was developed to interpret the HDI between OS and RS in rats. RESULTS: Our developed platform was successfully applied to screen the eight herbal extracts and their ten marker components on metabolic inhibition of OS and modification of OS transport mediated by P-gp, OAT3 and PEPT1. Results from six in-vitro experiments were analyzed after converting raw data from each experiment to corresponding fold-change (FC) values, based on which Radix Scutellariae (RS) were selected to have the most HDI potential with OS. By analyzing the plasma and urine pharmacokinetic data after co-administration of OS with a standardized RS extract in rats using an integrated population pharmacokinetics model, it is suggested that RS could inhibit OS hydrolysis during absorption and increase the absorbed fraction of OS, which leads to the increased ratio of OS concentration versus that of OSA in both rat plasma and urine. Never the less, the anti-virus effects of 2.5 h post-dose rat plasma were not influenced by co-administration of OS with RS. CONCLUSION: A six-dimension in-vitro screening platform has been developed and successfully applied to find RS as a potential herb that would influence the co-administrated OS in rats. Although co-administered RS could inhibit OS hydrolysis during absorption and increase the absorbed fraction of OS, which lead to the increased ratio of OS concentration versus that of OSA in both rat plasma and urine, the anti-virus effect of OS was not influenced by co-administered RS.


Subject(s)
Antiviral Agents/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Herb-Drug Interactions , Oseltamivir/pharmacokinetics , Scutellaria baicalensis , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Antiviral Agents/pharmacology , Caco-2 Cells , Dogs , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Madin Darby Canine Kidney Cells , Male , Medicine, Chinese Traditional , Microsomes, Liver/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Oseltamivir/pharmacology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL