Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
PLoS One ; 16(3): e0247820, 2021.
Article in English | MEDLINE | ID: mdl-33730064

ABSTRACT

The red macroalgae (seaweed) Asparagopsis spp. has shown to reduce ruminant enteric methane (CH4) production up to 99% in vitro. The objective of this study was to determine the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g CH4/kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADG/kg DMI), and carcass and meat quality in growing beef steers. Twenty-one Angus-Hereford beef steers were randomly allocated to one of three treatment groups: 0% (Control), 0.25% (Low), and 0.5% (High) A. taxiformis inclusion based on organic matter intake. Steers were fed 3 diets: high, medium, and low forage total mixed ration (TMR) representing life-stage diets of growing beef steers. The Low and High treatments over 147 days reduced enteric CH4 yield 45 and 68%, respectively. However, there was an interaction between TMR type and the magnitude of CH4 yield reduction. Supplementing low forage TMR reduced CH4 yield 69.8% (P <0.01) for Low and 80% (P <0.01) for High treatments. Hydrogen (H2) yield (g H2/DMI) increased (P <0.01) 336 and 590% compared to Control for the Low and High treatments, respectively. Carbon dioxide (CO2) yield (g CO2/DMI) increased 13.7% between Control and High treatments (P = 0.03). No differences were found in ADG, carcass quality, strip loin proximate analysis and shear force, or consumer taste preferences. DMI tended to decrease 8% (P = 0.08) in the Low treatment and DMI decreased 14% (P <0.01) in the High treatment. Conversely, FCE tended to increase 7% in Low (P = 0.06) and increased 14% in High (P <0.01) treatment compared to Control. The persistent reduction of CH4 by A. taxiformis supplementation suggests that this is a viable feed additive to significantly decrease the carbon footprint of ruminant livestock and potentially increase production efficiency.


Subject(s)
Animal Feed , Diet/veterinary , Dietary Supplements , Meat , Methane/metabolism , Rhodophyta/metabolism , Animals , Cattle , Male , Seaweed/metabolism , Stomach, Ruminant/metabolism
2.
J Environ Manage ; 200: 105-113, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28575778

ABSTRACT

In this study we test a novel approach to closing the anthropogenic nutrient cycle, by using the freshwater macroalga, Oedogonium intermedium, to recover dissolved nitrogen (N) and phosphorous (P) from municipal wastewater. We then convert this cultivated algae into two types of soil ameliorant; compost and biochar. To produce compost, algae was combined with sugarcane bagasse and left to mature for 10 weeks, and to produce biochar, algae was processed through slow pyrolysis at 450 °C. The mature compost had a total N and P content of 2.5% and 0.6%, which was 2- to 4-times lower than the algal biochar, which had a total N and P content of 5.5% and 2.5% respectively. Composting stabilized the N and P recovered from wastewater, with 80% of the initial N and >99% of the initial P retained in the mature compost. In contrast, only 29% of the initial N and 62% of the initial P was retained in the biochar. When the mature compost was added to a low fertility soil it significantly increased the production of sweet corn (Zea mays). Treatments receiving 50 and 100% compost produced 4-9 times more corn biomass than when synthetic fertilizer alone was added to the low fertility soil. When biochar was applied in conjunction with compost there was an additional 15% increase in corn productivity, most likely due to the ability of the biochar to bind labile N and P and prevent its loss from the soil. This study demonstrates a unique model for recovering N and P from municipal wastewater and recycling these nutrients into the agricultural industry. This could be an ideal model for regional areas where agriculture and water treatment facilities are co-located and could ultimately reduce the reliance of agriculture on finite mineral sources of P.


Subject(s)
Agriculture , Charcoal , Sewage , Soil
3.
Waste Manag ; 64: 133-139, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28318964

ABSTRACT

In this study, biochar is produced from biosolids with and without alum at a range of temperatures and simulated oxidative aging of the biochars is conducted to quantify the long-term leaching of P and metals. While biosolids containing alum had negligible amounts of plant-available P, after pyrolysis >90% of the P became immediately available for plant growth. When biosolids with no alum were converted into biochar there was a small increase in the availability of P but a larger pool was available after oxidation. Both of the biosolids leached significant amounts of metals after oxidation. In contrast, the biochars had a very low available metal content and this did not increase with oxidation, demonstrating a stable metal content. Pyrolysis is an effective waste management strategy for biosolids that can simultaneously reduce the leaching of metals and increase the efficiency of recycling of P for beneficial re-use.


Subject(s)
Metals , Phosphorus , Waste Management , Charcoal , Temperature
4.
J Environ Manage ; 169: 253-60, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26773429

ABSTRACT

Green seaweeds from the genus Ulva are a promising feedstock for the production of biochar for carbon (C) sequestration and soil amelioration. Ulva can be cultivated in waste water from land-based aquaculture and Ulva blooms ("green tides") strand millions of tons of biomass on coastal areas of Europe and China each year. The conversion of Ulva into biochar could recycle C and nutrients from eutrophic water into agricultural production. We produce biochar from Ulva ohnoi, cultivated in waste water from an aquaculture facility, and characterize its suitability for C sequestration and soil amelioration through bio-chemical analyses and plant growth experiments. Two biomass pre-treatments (fresh water rinsing to reduce salt, and pelletisation to increase density) were crossed with four pyrolysis temperatures (300-750 °C). Biomass rinsing decreased the ash and increased the C content of the resulting biochar. However, biochar produced from un-rinsed biomass had a higher proportion of fixed C and a higher yield. C sequestration decreased with increasing pyrolysis temperatures due to the combination of lower yield and lower total C content of biochar produced at high temperatures. Biochar produced from un-rinsed biomass at 300 °C had the greatest gravimetric C sequestration (110-120 g stable C kg(-1) seaweed). Biochar produced from un-pelletised Ulva enhanced plant growth three-fold in low fertility soils when the temperature of pyrolysis was less than 450 °C. The reduced effectiveness of the high-temperature biochars (>450 °C) was due to a lower N and higher salt content. Soil ameliorated with biochar produced from pelletised biomass had suppressed plant germination and growth. The most effective biochar for C sequestration and soil amelioration was produced from un-rinsed and un-pelletised Ulva at 300 °C. The green tide that occurs annually along the Shandong coastline in China generates sufficient biomass (200,000 tons dry weight) to ameliorate 12,500 ha of soil, sequester 15,000 t C and recycle 5500 t N into agriculture. We provide clear parameters for biochar production to enable the beneficial use of this biomass.


Subject(s)
Charcoal , Temperature , Ulva , Agriculture/methods , Biomass , Carbon Sequestration , China , Europe , Fresh Water , Seaweed/chemistry , Soil/chemistry , Wastewater
5.
J Environ Manage ; 165: 117-123, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26413805

ABSTRACT

Ash disposal waters from coal-fired power stations present a challenging water treatment scenario as they contain high concentrations of the oxyanions Se, As and Mo which are difficult to remove through conventional techniques. In an innovative process, macroalgae can be treated with Fe and processed through slow pyrolysis into Fe-biochar which has a high affinity for oxyanions. However, the effect of production conditions on the efficacy of Fe-biochar is poorly understood. We produced Fe-biochar from two algal sources; "Gracilaria waste" (organic remnants after agar is extracted from cultivated Gracilaria) and the freshwater macroalgae Oedogonium. Pyrolysis experiments tested the effects of the concentration of Fe(3+) in pre-treatment, and pyrolysis temperatures, on the efficacy of the Fe-biochar. The efficacy of Fe-biochar increased with increasing concentrations of Fe(3+) in the pre-treatment solutions, and decreased with increasing pyrolysis temperatures. The optimized Fe-biochar for each biomass was produced by treatment with a 12.5% w/v Fe(3+) solution, followed by slow pyrolysis at 300 °C. The Fe-biochar produced in this way had higher a biosorption capacity for As and Mo (62.5-80.7 and 67.4-78.5 mg g(-1) respectively) than Se (14.9-38.8 mg g(-1)) in single-element mock effluents, and the Fe-biochar produced from Oedogonium had a higher capacity for all elements than the Fe-biochar produced from Gracilaria waste. Regardless, the optimal Fe-biochars from both biomass sources were able to effectively treat Se, As and Mo simultaneously in an ash disposal effluent from a power station. The production of Fe-biochar from macroalgae is a promising technique for treatment of complex effluents containing oxyanions.


Subject(s)
Arsenic/chemistry , Charcoal/chemistry , Molybdenum/chemistry , Selenium/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Biomass , Chlorophyta/chemistry , Coal , Coal Ash/chemistry , Fresh Water , Gracilaria/chemistry , Iron/chemistry , Seaweed/chemistry
6.
PLoS One ; 9(7): e101284, 2014.
Article in English | MEDLINE | ID: mdl-25000501

ABSTRACT

Freshwater macroalgae represent a largely overlooked group of phototrophic organisms that could play an important role within an industrial ecology context in both utilising waste nutrients and water and supplying biomass for animal feeds and renewable chemicals and fuels. This study used water from the intensive aquaculture of freshwater fish (Barramundi) to examine how the biomass production rate and protein content of the freshwater macroalga Oedogonium responds to increasing the flux of nutrients and carbon, by either increasing water exchange rates or through the addition of supplementary nitrogen and CO2. Biomass production rates were highest at low flow rates (0.1-1 vol.day-1) using raw pond water. The addition of CO2 to cultures increased biomass production rates by between 2 and 25% with this effect strongest at low water exchange rates. Paradoxically, the addition of nitrogen to cultures decreased productivity, especially at low water exchange rates. The optimal culture of Oedogonium occurred at flow rates of between 0.5-1 vol.day-1, where uptake rates peaked at 1.09 g.m-2.day-1 for nitrogen and 0.13 g.m-2.day-1 for phosphorous. At these flow rates Oedogonium biomass had uptake efficiencies of 75.2% for nitrogen and 22.1% for phosphorous. In this study a nitrogen flux of 1.45 g.m-2.day-1 and a phosphorous flux of 0.6 g.m-2.day-1 was the minimum required to maintain the growth of Oedogonium at 16-17 g DW.m-2.day-1 and a crude protein content of 25%. A simple model of minimum inputs shows that for every gram of dry weight biomass production (g DW.m-2.day-1), Oedogonium requires 0.09 g.m-2.day-1 of nitrogen and 0.04 g.m-2.day-1 of phosphorous to maintain growth without nutrient limitation whilst simultaneously maintaining a high-nutrient uptake rate and efficiency. As such the integrated culture of freshwater macroalgae with aquaculture for the purposes of nutrient recovery is a feasible solution for the bioremediation of wastewater and the supply of a protein resource.


Subject(s)
Aquaculture/methods , Biomass , Chlorophyta/metabolism , Fresh Water , Seaweed/metabolism , Water/metabolism , Analysis of Variance , Animals , Biodegradation, Environmental , Biological Transport , Carbon/metabolism , Hydrogen-Ion Concentration , Nitrogen/metabolism , Perciformes/metabolism , Phosphorus/metabolism , Plant Proteins/metabolism
7.
Int J Parasitol ; 42(13-14): 1135-41, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23068914

ABSTRACT

Aqueous extracts from common tropical seaweeds were evaluated for their effect on the life cycle of the commercially important ectoparasite, Neobenedenia sp. (Platyhelminthes: Monogenea), through the survival of attached adult parasites, period of embryonic development, hatching success and oncomiracidia (larvae) infection success. There was no significant effect of any extract on the survival of adult parasites attached to fish hosts or infection success by oncomiracidia. However, the extracts of two seaweeds, Ulva sp. and Asparagopsis taxiformis, delayed embryonic development and inhibited egg hatching. The extract of A. taxiformis was most effective, inhibiting embryonic development of Neobenedenia sp. and reducing hatching success to 3% compared with 99% for the seawater control. Furthermore, of the 3% of eggs that hatched, time to first and last hatch was delayed (days 14 and 18) compared with the seawater control (days 5 and 7). Asparagopsis taxiformis shows the most potential for development as a natural treatment to manage monogenean infections in intensive aquaculture with the greatest impact at the embryo stage.


Subject(s)
Ectoparasitic Infestations/veterinary , Fish Diseases/drug therapy , Helminthiasis, Animal/drug therapy , Plant Extracts/pharmacology , Platyhelminths , Seaweed/chemistry , Animals , Aquaculture , Ectoparasitic Infestations/drug therapy , Fish Diseases/parasitology , Helminthiasis, Animal/parasitology , Ovum/drug effects , Perciformes , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL