Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 12(1): 16730, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202956

ABSTRACT

Several recent studies have established the efficacy of photobiomodulation therapy (PBMT) in painful clinical conditions. Diabetic neuropathy (DN) can be related to activating mitogen-activated protein kinases (MAPK), such as p38, in the peripheral nerve. MAPK pathway is activated in response to extracellular stimuli, including interleukins TNF-α and IL-1ß. We verified the pain relief potential of PBMT in streptozotocin (STZ)-induced diabetic neuropathic rats and its influence on the MAPK pathway regulation and calcium (Ca2+) dynamics. We then observed that PBMT applied to the L4-L5 dorsal root ganglion (DRG) region reduced the intensity of hyperalgesia, decreased TNF-α and IL-1ß levels, and p38-MAPK mRNA expression in DRG of diabetic neuropathic rats. DN induced the activation of phosphorylated p38 (p-38) MAPK co-localized with TRPV1+ neurons; PBMT partially prevented p-38 activation. DN was related to an increase of p38-MAPK expression due to proinflammatory interleukins, and the PBMT (904 nm) treatment counteracted this condition. Also, the sensitization of DRG neurons by the hyperglycemic condition demonstrated during the Ca2+ dynamics was reduced by PBMT, contributing to its anti-hyperalgesic effects.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Low-Level Light Therapy , Animals , Calcium/metabolism , Calcium, Dietary/metabolism , Diabetes Mellitus/metabolism , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/radiotherapy , Ganglia, Spinal/metabolism , Hyperalgesia , Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Streptozocin/pharmacology , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Cells ; 10(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34943780

ABSTRACT

Skeletal muscle atrophy occurs in several pathological conditions, such as cancer, especially during cancer-induced cachexia. This condition is associated with increased morbidity and poor treatment response, decreased quality of life, and increased mortality in cancer patients. A leucine-rich diet could be used as a coadjutant therapy to prevent muscle atrophy in patients suffering from cancer cachexia. Besides muscle atrophy, muscle function loss is even more important to patient quality of life. Therefore, this study aimed to investigate the potential beneficial effects of leucine supplementation on whole-body functional/movement properties, as well as some markers of muscle breakdown and inflammatory status. Adult Wistar rats were randomly distributed into four experimental groups. Two groups were fed with a control diet (18% protein): Control (C) and Walker 256 tumour-bearing (W), and two other groups were fed with a leucine-rich diet (18% protein + 3% leucine): Leucine Control (L) and Leucine Walker 256 tumour-bearing (LW). A functional analysis (walking, behaviour, and strength tests) was performed before and after tumour inoculation. Cachexia parameters such as body weight loss, muscle and fat mass, pro-inflammatory cytokine profile, and molecular and morphological aspects of skeletal muscle were also determined. As expected, Walker 256 tumour growth led to muscle function decline, cachexia manifestation symptoms, muscle fibre cross-section area reduction, and classical muscle protein degradation pathway activation, with upregulation of FoxO1, MuRF-1, and 20S proteins. On the other hand, despite having no effect on the walking test, inflammation status or muscle oxidative capacity, the leucine-rich diet improved muscle strength and behaviour performance, maintained body weight, fat and muscle mass and decreased some protein degradation markers in Walker 256 tumour-bearing rats. Indeed, a leucine-rich diet alone could not completely revert cachexia but could potentially diminish muscle protein degradation, leading to better muscle functional performance in cancer cachexia.


Subject(s)
Cachexia/diet therapy , Forkhead Box Protein O1/genetics , Leucine/pharmacology , Muscle Proteins/genetics , Muscular Atrophy/diet therapy , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Cachexia/genetics , Cachexia/pathology , Dietary Supplements , Humans , Inflammation/diet therapy , Inflammation/genetics , Inflammation/pathology , Leucine/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Neoplasms/complications , Neoplasms/diet therapy , Neoplasms/genetics , Proteolysis/drug effects , Quality of Life , Rats
3.
Mol Biol Rep ; 48(2): 1233-1241, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33475929

ABSTRACT

The literature has shown the beneficial effects of microcurrent (MC) therapy on tissue repair. We investigated if the application of MC at 10 µA/90 s could modulate the expression of remodeling genes transforming growth factor beta (Tgfb), connective tissue growth factor (Ctgf), insulin-like growth factor 1 (Igf1), tenascin C (Tnc), Fibronectin (Fn1), Scleraxis (Scx), Fibromodulin (Fmod) and tenomodulin in NIH/3T3 fibroblasts in a wound healing assay. The cell migration was analyzed between days 0 and 4 in both fibroblasts (F) and fibroblasts + MC (F+MC) groups. On the 4th day, cell viability and gene expression were also analyzed after daily MC application. Higher expression of Ctgf and lower expression of Tnc and Fmod, respectively, were observed in the F+MC group in relation to F group (p < 0.05), and no difference was observed between the groups for the genes Tgfb, Fn1 and Scx. In cell migration, a higher number of cells in the scratch region was observed in group F+MC (p < 0.05) compared to group F on the 4th day, and the cell viability assay showed no difference between the groups. In conclusion, MC therapy at an intensity/time of 10 µA/90 s with 4 daily applications did not affect cell viability, stimulated fibroblasts migration with the involvement of Ctgf, and reduced the Tnc and Fmod expression.


Subject(s)
Connective Tissue Growth Factor/genetics , Electric Stimulation Therapy , Fibromodulin/genetics , Tenascin/genetics , Wound Healing/radiation effects , Animals , Cell Movement/radiation effects , Fibronectins/genetics , Gene Expression Regulation/radiation effects , Humans , Insulin-Like Growth Factor I/genetics , Mice , NIH 3T3 Cells , Transforming Growth Factor beta1/genetics , Wound Healing/genetics
4.
Injury ; 46(4): 655-60, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25669962

ABSTRACT

OBJECTIVES: The purpose of this study was to assess whether the adhesive permits the collateral repair of axons originating from a vagus nerve to the interior of a sural nerve graft, and whether low-level laser therapy (LLLT) assists in the regeneration process. MATERIALS AND METHODS: Study sample consisted of 32 rats randomly separated into three groups: Control Group (CG; n=8), from which the intact sural nerve was collected; Experimental Group (EG; n=12), in which one of the ends of the sural nerve graft was coapted to the vagus nerve using the fibrin glue; and Experimental Group Laser (EGL; n=12), in which the animals underwent the same procedures as those in EG with the addition of LLLT. Ten weeks after surgery, the animals were euthanized. Morphological analysis by means of optical and electron microscopy, and morphometry of the regenerated fibers were employed to evaluate the results. RESULTS: Collateral regeneration of axons was observed from the vagus nerve to the interior of the autologous graft in EG and EGL, and in CG all dimensions measured were greater and presented a significant difference in relation to EG and EGL, except for the area and thickness of the myelin sheath, that showed significant difference only in relation to the EG. CONCLUSIONS: The present study demonstrated that the fibrin glue makes axonal regeneration feasible and is an efficient method to recover injured peripheral nerves, and the use of low-level laser therapy enhances nerve regeneration.


Subject(s)
Fibrin Tissue Adhesive/pharmacology , Low-Level Light Therapy , Nerve Regeneration/physiology , Snake Venoms/pharmacology , Sural Nerve/pathology , Vagus Nerve/pathology , Animals , Male , Microsurgery , Peripheral Nerves , Rats , Rats, Wistar , Regeneration , Wound Healing
6.
Lasers Med Sci ; 29(2): 805-11, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23982719

ABSTRACT

In the last decades, the tendon injuries have increased substantially. Previous results suggested that low-level laser treatment (LLLT) promotes synthesis of extracellular matrix and improves the functional properties of the tendon. The aim of this study was to evaluate the effects of different protocols of LLLT on partially tenotomized tendons. Adult male rats were divided into the following: G1-intact, G2-injured, G3-injured + LLLT (4 J/cm(2) continuous), G4-injured + LLLT (4 J/cm(2) at 20 Hz). G2, G3, and G4 were euthanized 8 days after injury. G5-injured, G6-injured + LLLT (4 J/cm(2) continuous), and G7-injured + LLL (4 J/cm(2) at 20 Hz until the seventh day and 2 kHz from 8 to 14 days). G5, G6, and G7 were euthanized on the 15th day. Glycosaminoglycan (GAG) level was quantified by dimethylmethylene blue method and analyzed on agarose gel. Toluidine blue (TB) stain was used to observe metachromasy. CatWalk system was used to evaluate gait recovery. Collagen organization was analyzed by polarization microscopy. The GAG level increased in all transected groups, except G5. In G6 and G7, there was a significant increase in GAG in relation to G5. In G3 and G4, the presence of dermatan sulfate band was more prominent than G2. TB stains showed intense metachromasy in the treated groups. Birefringence analysis showed improvement in collagen organization in G7. The gait was significantly improved in G7. In conclusion, pulsed LLLT leads to increased organization of collagen bundles and improved gait recovery.


Subject(s)
Low-Level Light Therapy/methods , Tendon Injuries/radiotherapy , Achilles Tendon/injuries , Animals , Glycosaminoglycans/metabolism , Lasers , Low-Level Light Therapy/instrumentation , Male , Microscopy, Polarization , Rats, Wistar , Tendon Injuries/metabolism , Tendon Injuries/physiopathology , Wound Healing/radiation effects
7.
Anesth Analg ; 115(5): 1234-41, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22822189

ABSTRACT

BACKGROUND: Bupivacaine (BVC) and ropivacaine (RVC) are local anesthetics widely used in surgical procedures. In previous studies, inclusion complexes of BVC or RVC in hydroxypropyl-ß-cyclodextrin (HP-ß-CD) increased differential nervous blockade, compared to the plain anesthetic solutions. In this study we evaluated the local neural and muscular toxicity of these new formulations containing 0.5% BVC or RVC complexed with HP-ß-CD (BVC(HP-ß-CD) and RVC(HP-ß-CD)). METHODS: Schwann cell viability was assessed by determination of mitochondrial dehydrogenase activity, and histopathological evaluation of the rat sciatic nerve was used to identify local neurotoxic effects (48 hours and 7 days after the treatments). Evaluations of serum creatine kinase levels and the histopathology of rat gastrocnemius muscle (48 hours after treatment) were also performed. RESULTS: Schwann cell toxicity evaluations revealed no significant differences between complexed and plain local anesthetic formulations. However, use of the complexed local anesthetics reduced serum creatine kinase levels 5.5-fold, relative to the plain formulations. The differences were significant at P < 0.05 (BVC) and P < 0.01 (RVC). The histopathological muscle evaluation showed that differences between groups treated with local anesthetics (BVC or RVC) and their respective complexed formulations (BVC(HP-ß-CD) or RVC(HP-ß-CD)) were significant (P < 0.05). CONCLUSIONS: We concluded that the new formulations presented a lower myotoxicity and a similar cytotoxic effect when compared to plain local anesthetic solutions.


Subject(s)
Amides/toxicity , Bupivacaine/toxicity , Cyclodextrins/toxicity , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Amides/chemistry , Animals , Animals, Newborn , Bupivacaine/chemistry , Cells, Cultured , Cyclodextrins/chemistry , Drug Evaluation, Preclinical , Male , Muscular Diseases/chemically induced , Muscular Diseases/diagnosis , Muscular Diseases/pathology , Rats , Rats, Wistar , Ropivacaine
8.
J Pharm Pharmacol ; 60(11): 1449-57, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18957165

ABSTRACT

This study reports an investigation of the pharmacological activity, cytotoxicity and local effects of a liposomal formulation of the novel local anaesthetic ropivacaine (RVC) compared with its plain solution. RVC was encapsulated into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine, cholesterol and alpha-tocopherol (4:3:0.07, mole %). Particle size, partition coefficient determination and in-vitro release studies were used to characterize the encapsulation process. Cytotoxicity was evaluated by the tetrazolium reduction test using sciatic nerve Schwann cells in culture. Local anaesthetic activity was assessed by mouse sciatic and rat infraorbital nerve blockades. Histological analysis was performed to verify the myotoxic effects evoked by RVC formulations. Plain (RVC(PLAIN)) and liposomal RVC (RVC(LUV)) samples were tested at 0.125%, 0.25% and 0.5% concentrations. Vesicle size distribution showed liposomal populations of 370 and 130 nm (85 and 15%, respectively), without changes after RVC encapsulation. The partition coefficient value was 132 +/- 26 and in-vitro release assays revealed a decrease in RVC release rate (1.5 fold, P < 0.001) from liposomes. RVC(LUV) presented reduced cytotoxicity (P < 0.001) when compared with RVC(PLAIN). Treatment with RVC(LUV) increased the duration (P < 0.001) and intensity of the analgesic effects either on sciatic nerve blockade (1.4-1.6 fold) and infraorbital nerve blockade tests (1.5 fold), in relation to RVC(PLAIN). Regarding histological analysis, no morphological tissue changes were detected in the area of injection and sparse inflammatory cells were observed in only one of the animals treated with RVC(PLAIN) or RVC(luv) at 0.5%. Despite the differences between these preclinical studies and clinical conditions, we suggest RVC(LUV) as a potential new formulation, since RVC is a new and safe local anaesthetic agent.


Subject(s)
Amides/pharmacology , Anesthetics, Local/pharmacology , Nerve Block/methods , Amides/administration & dosage , Amides/toxicity , Anesthetics, Local/administration & dosage , Anesthetics, Local/toxicity , Animals , Cholesterol/chemistry , Drug Evaluation, Preclinical/methods , Eggs , Liposomes , Male , Mice , Particle Size , Pharmaceutical Solutions , Phosphatidylcholines/chemistry , Rats , Rats, Sprague-Dawley , Rats, Wistar , Ropivacaine , Schwann Cells/drug effects , Schwann Cells/metabolism , Toxicity Tests , alpha-Tocopherol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL