Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Int J Mol Sci ; 21(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586060

ABSTRACT

Inhibition of cholinesterases remains one of a few available treatment strategies for neurodegenerative dementias such as Alzheimer's disease and related conditions. The current study was inspired by previous data on anticholinesterase properties of diterpenoids from Perovskia atriplicifolia and other Lamiaceae species. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition by the three new natural compounds-(1R,15R)-1-acetoxycryptotanshinone (1), (1R)-1-acetoxytanshinone IIA (2), and (15R)-1-oxoaegyptinone A (3)-as well as, new for this genus, isograndifoliol (4) were assessed. Three of these compounds exhibited profound inhibition of butyrylcholinesterase (BChE) and much weaker inhibition of acetylcholinesterase (AChE). All compounds (1-4) selectively inhibited BChE (IC50 = 2.4, 7.9, 50.8, and 0.9 µM, respectively), whereas only compounds 3 and 4 moderately inhibited AChE (IC50 329.8 µM and 342.9 µM). Molecular docking and in silico toxicology prediction studies were also performed on the active compounds. Natural oxygenated norditerpenoids from the traditional Central Asian medicinal plant P. atriplicifolia are selective BChE inhibitors. Their high potential makes them useful candidate molecules for further investigation as lead compounds in the development of a natural drug against dementia caused by neurodegenerative diseases.


Subject(s)
Acetylcholinesterase/chemistry , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Diterpenes/pharmacology , Lamiaceae/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Humans , Molecular Docking Simulation , Structure-Activity Relationship
2.
Molecules ; 24(10)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137754

ABSTRACT

Medicinal plants containing complex mixtures of several compounds with various potential beneficial biological effects are attractive treatment interventions for a complex multi-faceted disease like diabetes. In this study, compounds identified from African medicinal plants were evaluated for their potential anti-diabetic activity. A total of 867 compounds identified from over 300 medicinal plants were screened in silico with the DIA-DB web server (http://bio-hpc.eu/software/dia-db/) against 17 known anti-diabetic drug targets. Four hundred and thirty compounds were identified as potential inhibitors, with 184 plants being identified as the sources of these compounds. The plants Argemone ochroleuca, Clivia miniata, Crinum bulbispermum, Danais fragans, Dioscorea dregeana, Dodonaea angustifolia, Eucomis autumnalis, Gnidia kraussiana, Melianthus comosus, Mondia whitei, Pelargonium sidoides, Typha capensis, Vinca minor, Voacanga Africana, and Xysmalobium undulatum were identified as new sources rich in compounds with a potential anti-diabetic activity. The major targets identified for the natural compounds were aldose reductase, hydroxysteroid 11-beta dehydrogenase 1, dipeptidyl peptidase 4, and peroxisome proliferator-activated receptor delta. More than 30% of the compounds had five or more potential targets. A hierarchical clustering analysis coupled with a maximum common substructure analysis revealed the importance of the flavonoid backbone for predicting potential activity against aldose reductase and hydroxysteroid 11-beta dehydrogenase 1. Filtering with physiochemical and the absorption, distribution, metabolism, excretion and toxicity (ADMET) descriptors identified 28 compounds with favorable ADMET properties. The six compounds-crotofoline A, erythraline, henningsiine, nauclefidine, vinburnine, and voaphylline-were identified as novel potential multi-targeted anti-diabetic compounds, with favorable ADMET properties for further drug development.


Subject(s)
Hypoglycemic Agents/analysis , Hypoglycemic Agents/pharmacology , Internet , Plants, Medicinal/chemistry , User-Computer Interface , Biological Availability , Hypoglycemic Agents/chemistry , Molecular Docking Simulation
3.
Chem Biodivers ; 16(5): e1900017, 2019 May.
Article in English | MEDLINE | ID: mdl-30891904

ABSTRACT

Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl- and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50 =141.60±3.39 µm) and hyuganin C (IC50 =38.86±1.69 µm) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50 =46.58±0.91 µm) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.


Subject(s)
Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Coumarins/chemistry , Phloroglucinol/analogs & derivatives , Terpenes/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Apiaceae/chemistry , Binding Sites , Butyrylcholinesterase/chemistry , Catalytic Domain , Coumarins/isolation & purification , Molecular Docking Simulation , Phloroglucinol/chemistry , Plant Extracts/chemistry , Quantitative Structure-Activity Relationship , Thermodynamics
4.
Phytochemistry ; 133: 33-44, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27817931

ABSTRACT

Cholinesterase inhibition is one of the most treatment strategies against Alzheimer's disease (AD) where metal accumulation is also strongly associated with pathology of the disease. In the current study, we assessed inhibitory effect against acetyl- (AChE) and butyrylcholinesterase (BChE) and metal-chelating capacity of twelve diterpenes: arucadiol, miltirone, tanshinone IIa, 1-oxomiltirone, cryptotanshinone, 1,2-didehydromiltirone, 1,2-didehydrotanshinone IIa, 1ß-hydroxycryptotanshinone, 15,16-dihydrotanshinone, tanshinone I, isotanshinone II, 1(S)-hydroxytanshinone IIa, and rosmarinic acid, isolated from Perovskia atriplicifolia and Salvia glutinosa. The compounds were tested at 10 µg/mL using ELISA microtiter assays against AChE and BChE. QSAR and molecular docking studies have been also performed on the active compounds. All of the compounds showed higher [e.g., IC50 = 1.12 ± 0.07 µg/mL for 1,2-didehydromiltirone, IC50 = 1.15 ± 0.07 µg/mL for cryptotanshinone, IC50 = 1.20 ± 0.03 µg/mL for arucadiol, etc.)] or closer [1,2-didehydrotanshinone IIa (IC50 = 5.98 ± 0.49 µg/mL) and 1(S)-hydroxytanshinone IIa (IC50 = 5.71 ± 0.27 µg/mL)] inhibition against BChE as compared to that of galanthamine (IC50 = 12.56 ± 0.37 µg/mL), whereas only 15,16-dihydrotanshinone moderately inhibited AChE (65.17 ± 1.39%). 1,2-Didehydrotanshinone IIa (48.94 ± 0.26%) and 1(S)-hydroxytanshinone IIa (47.18 ± 5.10%) possessed the highest metal-chelation capacity. The present study affords an evidence for the fact that selective BChE inhibitors should be further investigated as promising candidate molecules for AD therapy.


Subject(s)
Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/pharmacology , Cinnamates/isolation & purification , Cinnamates/pharmacology , Depsides/isolation & purification , Depsides/pharmacology , Diterpenes/pharmacology , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Lamiaceae/chemistry , Salvia/chemistry , Abietanes/chemistry , Alzheimer Disease/drug therapy , Cinnamates/chemistry , Depsides/chemistry , Diterpenes/chemistry , Diterpenes/isolation & purification , Drugs, Chinese Herbal/chemistry , Lamiaceae/genetics , Phenanthrenes/chemistry , Quantitative Structure-Activity Relationship , Salvia/genetics , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL