Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Nutr Food Res ; 56(5): 741-52, 2012 May.
Article in English | MEDLINE | ID: mdl-22648621

ABSTRACT

SCOPE: Nutritional intervention during muscle wasting aims to attenuate net muscle protein loss. Branched chain amino acids, especially leucine, are able to stimulate the anabolic mammalian target of rapamycin (mTOR) signalling cascade and protein synthesis. It has been suggested that muscle myofibrillar protein expression is more responsive to amino acid supplementation compared to cytoplasmic proteins, although accretion of myofibrillar proteins has not extensively been investigated. We hypothesized that leucine specifically increases myofibrillar protein synthesis in skeletal muscle. METHODS AND RESULTS: This hypothesis was investigated in C2C12 skeletal muscle cells using physiologically relevant culture conditions. Leucine supplementation specifically increased myofibrillar protein accretion, including myosin heavy chain-slow and -fast and myosin light chain 1 and -3 in C2C12 cells. Neither total protein content, nor de novo protein synthesis was affected, despite leucine-induced increased 4E-BP1 and S6K1 phosphorylation. Leucine supplementation did not affect myogenesis, measured by creatine kinase activity and myoblast fusion, either. Remarkably, leucine-induced increased myofibrillar protein accretion was accompanied by elevated MyHC mRNA levels, which involved mTOR-dependent and -independent regulation of MyHC-4 and MyHC-7 gene-expression, respectively. CONCLUSION: This study clearly demonstrates myofibrillar and not generic protein accretion in skeletal muscle following leucine supplementation, and suggests this involves pre-translational control of MyHC expression by leucine.


Subject(s)
Leucine/pharmacology , Muscle Proteins/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins , Cells, Cultured , Creatine Kinase/metabolism , Dietary Supplements , Eukaryotic Initiation Factors , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , Mice , Muscle Development/drug effects , Muscle, Skeletal/cytology , Myofibrils/drug effects , Myofibrils/metabolism , Myosin Heavy Chains/metabolism , Myosin Light Chains/metabolism , Phosphoproteins/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL