Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Commun ; 12(1): 4141, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230471

ABSTRACT

Genetic gain in potato is hampered by the heterozygous tetraploid genome of cultivated potato. Converting potato into a diploid inbred-line based F1-hybrid crop provides a promising route towards increased genetic gain. The introduction of a dominant S-locus inhibitor (Sli) gene into diploid potato germplasm allows efficient generation of self-fertilized seeds and thus the development of potato inbred lines. Little is known about the structure and function of the Sli locus. Here we describe the mapping of Sli to a 12.6 kb interval on chromosome 12 using a recombinant screen approach. One of two candidate genes present in this interval shows a unique sequence that is exclusively present in self-compatible lines. We describe an expression vector that converts self-incompatible genotypes into self-compatible and a CRISPR-Cas9 vector that converts SC genotypes into SI. The Sli gene encodes an F-box protein that is specifically expressed in pollen from self-compatible plants. A 533 bp insertion in the promotor of that gene leads to a gain of function mutation, which overcomes self-pollen rejection.


Subject(s)
Genes, Plant/genetics , Plant Breeding , Plant Proteins/genetics , Solanum tuberosum/genetics , CRISPR-Cas Systems , Chromosome Mapping , Chromosomes, Plant , Diploidy , Genotype , Heterozygote , Magnoliopsida , Pollen/genetics , Seeds/metabolism , Self-Incompatibility in Flowering Plants/genetics
2.
Physiol Plant ; 164(2): 163-175, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29314007

ABSTRACT

Physiology and genetics are tightly interrelated. Understanding the genetic basis of a physiological trait such as the quantum yield of the photosystem II, or photosynthetic responses to environmental changes will benefit the understanding of these processes. By means of chlorophyll fluorescence (CF) imaging, the quantum yield of photosystem II can be determined rapidly, precisely and non-invasively. In this article, the genetic control and variation in the steady-state quantum yield of PSII (ΦPSII ) is analyzed for diploid potato plants. Current progress in potato research and breeding is slow due to high levels of heterozygosity and complexity of tetraploid genetics. Diploid potatoes offer the possibility of overcoming this problem and advance research for one of the globally most important staple foods. With the help of a diploid genetic mapping population two genetic loci that were strongly associated with differences in ΦPSII were identified. This is a proof of principle that genetic analysis for ΦPSII can be done on potato. The effects of three different stress conditions that are important in potato cultivation were also tested: salt stress, low temperature and deficiency in the macronutrient phosphate. For the last two stresses, significant decreases in photosynthetic activity could be shown, revealing potential for stress detection with CF based tools. In general, our findings show the potential of high-throughput phenotyping for physiological research and breeding in potato.


Subject(s)
Chlorophyll/metabolism , Photosynthesis/genetics , Solanum tuberosum/genetics , Cold Temperature , Diploidy , Fluorescence , Genetic Variation/genetics
3.
J Integr Plant Biol ; 58(4): 397-412, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26576823

ABSTRACT

The whitefly Bemisia tabaci is a serious threat in tomato cultivation worldwide as all varieties grown today are highly susceptible to this devastating herbivorous insect. Many accessions of the tomato wild relative Solanum pennellii show a high resistance towards B. tabaci. A mapping approach was used to elucidate the genetic background of whitefly-resistance related traits and associated biochemical traits in this species. Minor quantitative trait loci (QTLs) for whitefly adult survival (AS) and oviposition rate (OR) were identified and some were confirmed in an F2 BC1 population, where they showed increased percentages of explained variance (more than 30%). Bulked segregant analyses on pools of whitefly-resistant and -susceptible F2 plants enabled the identification of metabolites that correlate either with resistance or susceptibility. Genetic mapping of these metabolites showed that a large number of them co-localize with whitefly-resistance QTLs. Some of these whitefly-resistance QTLs are hotspots for metabolite QTLs. Although a large number of metabolite QTLs correlated to whitefly resistance or susceptibility, most of them are yet unknown compounds and further studies are needed to identify the metabolic pathways and genes involved. The results indicate a direct genetic correlation between biochemical-based resistance characteristics and reduced whitefly incidence in S. pennellii.


Subject(s)
Disease Resistance/genetics , Hemiptera/physiology , Metabolomics , Plant Diseases/genetics , Plant Diseases/parasitology , Solanum/metabolism , Solanum/parasitology , Animals , Crosses, Genetic , Discriminant Analysis , Gas Chromatography-Mass Spectrometry , Genotype , Metabolome/genetics , Oviposition , Phenotype , Quantitative Trait Loci/genetics , Solanum/genetics
4.
BMC Genet ; 15: 142, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25539894

ABSTRACT

BACKGROUND: Host plant resistance has been proposed as one of the most promising approaches in whitefly management. Already in 1995 two quantitative trait loci (Tv-1 and Tv-2) originating from S. habrochaites CGN1.1561 were identified that reduced the oviposition rate of the greenhouse whitefly (Trialeurodes vaporariorum). After this first study, several others identified QTLs affecting whitefly biology as well. Generally, the QTLs affecting oviposition were highly correlated with a reduction in whitefly survival and the presence of high densities of glandular trichomes type IV. The aim of our study was to further characterize Tv-1 and Tv-2, and to determine their role in resistance against Bemisia tabaci. RESULTS: We selected F2 plants homozygous for the Tv-1 and Tv-2 QTL regions and did three successive backcrosses without phenotypic selection. Twenty-three F2BC3 plants were phenotyped for whitefly resistance and differences were found in oviposition rate of B. tabaci. The F2BC3 plants with the lowest oviposition rate had an introgression on Chromosome 5 in common. Further F2BC4, F2BC4S1 and F2BC4S2 families were developed, genotyped and phenotyped for adult survival, oviposition rate and trichome type and density. It was possible to confirm that an introgression on top of Chr. 5 (OR-5), between the markers rs-2009 and rs-7551, was responsible for reducing whitefly oviposition rate. CONCLUSION: We found a region of 3.06 Mbp at the top of Chr. 5 (OR-5) associated with a reduction in the oviposition rate of B. tabaci. This reduction was independent of the presence of the QTLs Tv-1 and Tv-2 as well as of the presence of trichomes type IV. The OR-5 locus will provide new opportunities for resistance breeding against whiteflies, which is especially relevant in greenhouse cultivation.


Subject(s)
Hemiptera/physiology , Oviposition , Solanum lycopersicum/genetics , Solanum/genetics , Animals , Female , Genes, Plant , Genetic Association Studies , Herbivory , Pest Control, Biological , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Quantitative Trait Loci
5.
BMC Genomics ; 15: 1152, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25526885

ABSTRACT

BACKGROUND: A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS). RESULTS: A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides. CONCLUSIONS: The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Genotyping Techniques , Plant Diseases/virology , Plant Viruses/physiology , Solanum/genetics , Solanum/virology , Alleles , Computer Simulation , Genome, Plant/genetics , Inbreeding , Metabolome , Plant Diseases/immunology , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Sequence Analysis , Solanum/immunology , Solanum/metabolism
6.
Theor Appl Genet ; 112(5): 958-67, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16404585

ABSTRACT

The non-structural dry matter content of onion bulbs consists principally of fructose, glucose, sucrose and fructans. The objective of this study was to understand the genetic basis for the wide variation observed in the relative amounts of these carbohydrates. Bulb carbohydrate composition was evaluated in progeny from crosses between high dry matter storage onion varieties and sweet, low dry matter varieties. When samples were analysed on a dry weight basis, reducing sugar and fructan content exhibited high negative correlations and bimodal segregation suggestive of the action of a major gene. A polymorphic SSR marker, ACM235, was identified which exhibited strong disequilibrium with bulb fructan content in F(2:3) families from the 'W202A' x 'Texas Grano 438' mapping population evaluated in two environments. This marker was mapped to chromosome 8 in the interspecific population 'Allium cepa x A. roylei'. Mapping in the 'Colossal Grano PVP' x 'Early Longkeeper P12' F2 population showed that a dominant major gene conditioning high-fructan content lay in the same genomic region. QTL analysis of total bulb fructan content in the intraspecific mapping population 'BYG15-23' x 'AC43' using a complete molecular marker map revealed only one significant QTL in the same chromosomal region. This locus, provisionally named Frc, may account for the major phenotypic differences in bulb carbohydrate content between storage and sweet onion varieties.


Subject(s)
Chromosome Mapping , Fructans/analysis , Onions , Breeding , Genetic Linkage , Genetic Markers , Genetic Variation , Onions/anatomy & histology , Onions/chemistry , Onions/genetics , Phenotype , Polymorphism, Genetic , Quantitative Trait Loci , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL