Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Nutr Food Res ; 59(9): 1745-57, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26019023

ABSTRACT

SCOPE: Consumption of a low-fat spread enriched with plant sterols (PS) and different low doses (<2 g/day) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil reduces serum triglycerides (TGs) and low-density lipoprotein-cholesterol (LDL-Chol) and thus beneficially affects two blood lipid risk factors. Yet, their combined effects on TG and Chol in various lipoprotein subclasses have been investigated to a limited extent. METHODS AND RESULTS: In a randomized, double-blind, placebo-controlled, parallel study, we determined TG and Chol in 13 LP subclasses in fasting serum of 282 hypercholesterolemic subjects, who consumed either a placebo spread or one of the four spreads containing PS (2.5 g/day) and EPA+DHA (0.0, 0.9, 1.3, and 1.8 g/day) for 4 weeks. After PS treatment, total LDL-Chol was reduced, which was not further changed by EPA+DHA. No shift in the LDL-Chol particle distribution was observed. The addition of EPA+DHA to PS dose-dependently reduced VLDL-Chol and VLDL-TG mainly in larger particles. Furthermore, the two highest doses of EPA+DHA increased Chol and TG in the larger HDL particles, while these concentrations were decreased in the smallest HDL particles. CONCLUSION: The consumption of a low-fat spread enriched with both PS and EPA+DHA induced shifts in the lipoprotein distribution that may provide additional cardiovascular benefits over PS consumption alone.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Lipoproteins/blood , Phytosterols/administration & dosage , Adult , Aged , Body Mass Index , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cholesterol, VLDL/blood , Computer Simulation , Dose-Response Relationship, Drug , Double-Blind Method , Fasting , Humans , Hypercholesterolemia/drug therapy , Middle Aged , Triglycerides/blood
2.
PLoS One ; 9(7): e100376, 2014.
Article in English | MEDLINE | ID: mdl-25049048

ABSTRACT

Dietary medium chain fatty acids (MCFA) and linoleic acid follow different metabolic routes, and linoleic acid activates PPAR receptors. Both these mechanisms may modify lipoprotein and fatty acid metabolism after dietary intervention. Our objective was to investigate how dietary MCFA and linoleic acid supplementation and body fat distribution affect the fasting lipoprotein subclass profile, lipoprotein kinetics, and postprandial fatty acid kinetics. In a randomized double blind cross-over trial, 12 male subjects (age 51±7 years; BMI 28.5±0.8 kg/m2), were divided into 2 groups according to waist-hip ratio. They were supplemented with 60 grams/day MCFA (mainly C8:0, C10:0) or linoleic acid for three weeks, with a wash-out period of six weeks in between. Lipoprotein subclasses were measured using HPLC. Lipoprotein and fatty acid metabolism were studied using a combination of several stable isotope tracers. Lipoprotein and tracer data were analyzed using computational modeling. Lipoprotein subclass concentrations in the VLDL and LDL range were significantly higher after MCFA than after linoleic acid intervention. In addition, LDL subclass concentrations were higher in lower body obese individuals. Differences in VLDL metabolism were found to occur in lipoprotein lipolysis and uptake, not production; MCFAs were elongated intensively, in contrast to linoleic acid. Dietary MCFA supplementation led to a less favorable lipoprotein profile than linoleic acid supplementation. These differences were not due to elevated VLDL production, but rather to lower lipolysis and uptake rates.


Subject(s)
Dietary Fats/metabolism , Linoleic Acid/metabolism , Lipolysis , Lipoproteins, VLDL/metabolism , Adult , Dietary Fats/administration & dosage , Dietary Supplements/analysis , Double-Blind Method , Fasting , Fatty Acids/administration & dosage , Fatty Acids/metabolism , Humans , Linoleic Acid/administration & dosage , Lipoproteins, LDL/metabolism , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL