Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Cancer Res ; 26(8): 1985-1996, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31831560

ABSTRACT

PURPOSE: Prostate-specific membrane antigen (PSMA) is an attractive target for radionuclide therapy of metastatic castration-resistant prostate cancer (mCRPC). PSMA-targeted alpha therapy (TAT) has shown early signs of activity in patients with prostate cancer refractory to beta radiation. We describe a novel, antibody-based TAT, the PSMA-targeted thorium-227 conjugate PSMA-TTC (BAY 2315497) consisting of the alpha-particle emitter thorium-227 complexed by a 3,2-HOPO chelator covalently linked to a fully human PSMA-targeting antibody. EXPERIMENTAL DESIGN: PSMA-TTC was characterized for affinity, mode of action, and cytotoxic activity in vitro. Biodistribution, pharmacokinetics, and antitumor efficacy were investigated in vivo using cell line and patient-derived xenograft (PDX) models of prostate cancer. RESULTS: PSMA-TTC was selectively internalized into PSMA-positive cells and potently induced DNA damage, cell-cycle arrest, and apoptosis in vitro. Decrease in cell viability was observed dependent on the cellular PSMA expression levels. In vivo, PSMA-TTC showed strong antitumor efficacy with T/C values of 0.01 to 0.31 after a single injection at 300 to 500 kBq/kg in subcutaneous cell line and PDX models, including models resistant to standard-of-care drugs such as enzalutamide. Furthermore, inhibition of both cancer and cancer-induced abnormal bone growth was observed in a model mimicking prostate cancer metastasized to bone. Specific tumor uptake and efficacy were demonstrated using various PSMA-TTC doses and dosing schedules. Induction of DNA double-strand breaks was identified as a key mode of action for PSMA-TTC both in vitro and in vivo. CONCLUSIONS: The strong preclinical antitumor activity of PSMA-TTC supports its clinical evaluation, and a phase I trial is ongoing in mCRPC patients (NCT03724747).


Subject(s)
Alpha Particles/therapeutic use , Antigens, Surface/metabolism , Antineoplastic Agents, Immunological/pharmacology , Drug Evaluation, Preclinical/methods , Glutamate Carboxypeptidase II/metabolism , Immunoconjugates/pharmacokinetics , Prostatic Neoplasms/radiotherapy , Thorium/pharmacology , Animals , Apoptosis , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Mice, SCID , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Radiopharmaceuticals/pharmacology , Tissue Distribution , Xenograft Model Antitumor Assays
2.
Mol Cancer Ther ; 16(5): 893-904, 2017 05.
Article in English | MEDLINE | ID: mdl-28292941

ABSTRACT

C4.4A (LYPD3) has been identified as a cancer- and metastasis-associated internalizing cell surface protein that is expressed in non-small cell lung cancer (NSCLC), with particularly high prevalence in the squamous cell carcinoma (SCC) subtype. With the exception of skin keratinocytes and esophageal endothelial cells, C4.4A expression is scarce in normal tissues, presenting an opportunity to selectively treat cancers with a C4.4A-directed antibody-drug conjugate (ADC). We have generated BAY 1129980 (C4.4A-ADC), an ADC consisting of a fully human C4.4A-targeting mAb conjugated to a novel, highly potent derivative of the microtubule-disrupting cytotoxic drug auristatin via a noncleavable alkyl hydrazide linker. In vitro, C4.4A-ADC demonstrated potent antiproliferative efficacy in cell lines endogenously expressing C4.4A and inhibited proliferation of C4.4A-transfected A549 lung cancer cells showing selectivity compared with a nontargeted control ADC. In vivo, C4.4A-ADC was efficacious in human NSCLC cell line (NCI-H292 and NCI-H322) and patient-derived xenograft (PDX) models (Lu7064, Lu7126, Lu7433, and Lu7466). C4.4A expression level correlated with in vivo efficacy, the most responsive being the models with C4.4A expression in over 50% of the cells. In the NCI-H292 NSCLC model, C4.4A-ADC demonstrated equal or superior efficacy compared to cisplatin, paclitaxel, and vinorelbine. Furthermore, an additive antitumor efficacy in combination with cisplatin was observed. Finally, a repeated dosing with C4.4A-ADC was well tolerated without changing the sensitivity to the treatment. Taken together, C4.4A-ADC is a promising therapeutic candidate for the treatment of NSCLC and other cancers expressing C4.4A. A phase I study (NCT02134197) with the C4.4A-ADC BAY 1129980 is currently ongoing. Mol Cancer Ther; 16(5); 893-904. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Adhesion Molecules/immunology , Immunoconjugates/administration & dosage , Aminobenzoates/chemistry , Aminobenzoates/immunology , Animals , Antibodies, Monoclonal/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/immunology , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Mice , Oligopeptides/chemistry , Oligopeptides/immunology , Paclitaxel/administration & dosage , Paclitaxel/immunology , Vinblastine/administration & dosage , Vinblastine/analogs & derivatives , Vinblastine/immunology , Vinorelbine , Xenograft Model Antitumor Assays
3.
Mol Cancer Ther ; 15(4): 583-92, 2016 04.
Article in English | MEDLINE | ID: mdl-26832791

ABSTRACT

Monopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile. In cellular mechanistic assays, both Mps1 inhibitors abrogated nocodazole-induced SAC activity and induced premature exit from mitosis ("mitotic breakthrough"), resulting in multinuclearity and tumor cell death. Both compounds efficiently inhibited tumor cell proliferation in vitro (IC50 nmol/L range). In vivo, BAY 1161909 and BAY 1217389 achieved moderate efficacy in monotherapy in tumor xenograft studies. However, in line with its unique mode of action, when combined with paclitaxel, low doses of Mps1 inhibitor reduced paclitaxel-induced mitotic arrest by the weakening of SAC activity. As a result, combination therapy strongly improved efficacy over paclitaxel or Mps1 inhibitor monotreatment at the respective MTDs in a broad range of xenograft models, including those showing acquired or intrinsic paclitaxel resistance. Both Mps1 inhibitors showed good tolerability without adding toxicity to paclitaxel monotherapy. These preclinical findings validate the innovative concept of SAC abrogation for cancer therapy and justify clinical proof-of-concept studies evaluating the Mps1 inhibitors BAY 1161909 and BAY 1217389 in combination with antimitotic cancer drugs to enhance their efficacy and potentially overcome resistance. Mol Cancer Ther; 15(4); 583-92. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Discovery , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Female , Humans , Male , Mice , Mitosis/drug effects , Protein Kinase Inhibitors/chemistry , Rats , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
4.
Biomarkers ; 17(6): 498-506, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22616911

ABSTRACT

CONTEXT: Circulating tumor DNA (ctDNA) is a promising biomarker in cancer. MATERIALS AND METHODS: We generated xenograft models of cancer and detected ctDNA in plasma by qRCR targeting human AluJ sequences. RESULTS: Our assay reached single cell sensitivity in vitro and a correlation between ctDNA amount and tumor size was observed in vivo. Treatment with a mitogen activated protein kinase kinase (MEK)-inhibitor (BAY 869766) reduced ctDNA levels. Using this assay, we also confirmed that high levels of cell-free DNA are found in cancer patients compared to healthy individuals. DISCUSSION AND CONCLUSION: We show that ctDNA may be useful biomarker for monitoring tumor growth and treatment response.


Subject(s)
Biomarkers, Tumor/blood , Breast Neoplasms/blood , Colorectal Neoplasms/blood , DNA/blood , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Case-Control Studies , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Diphenylamine/administration & dosage , Diphenylamine/analogs & derivatives , Female , Humans , Kinetics , Male , Mice , Mice, Nude , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Sulfonamides/administration & dosage , Tumor Burden
5.
Exp Dermatol ; 20(1): 41-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21158938

ABSTRACT

T-cell-mediated processes play an essential role in the pathogenesis of several inflammatory skin diseases such as atopic dermatitis, allergic contact dermatitis and psoriasis. The aim of this study was to investigate the role of the IL-2-inducible tyrosine kinase (Itk), an enzyme acting downstream of the T-cell receptor (TCR), in T-cell-dependent skin inflammation using three approaches. Itk knockout mice display significantly reduced inflammatory symptoms in mouse models of acute and subacute contact hypersensitivity (CHS) reactions. Systemic administration of a novel small molecule Itk inhibitor, Compound 44, created by chemical optimization of an initial high-throughput screening hit, inhibited Itk's activity with an IC50 in the nanomolar range. Compound 44 substantially reduced proinflammatory immune responses in vitro and in vivo after systemic administration in two acute CHS models. In addition, our data reveal that human Itk, comparable to its murine homologue, is expressed mainly in T cells and is increased in lesional skin from patients with atopic dermatitis and allergic contact dermatitis. Finally, silencing of Itk by RNA interference in primary human T cells efficiently blocks TCR-induced lymphokine secretion. In conclusion, Itk represents an interesting new target for the therapy of T-cell-mediated inflammatory skin diseases.


Subject(s)
Dermatitis/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Base Sequence , Dermatitis/enzymology , Dermatitis/immunology , Dermatitis, Allergic Contact/drug therapy , Dermatitis, Allergic Contact/enzymology , Dermatitis, Allergic Contact/immunology , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/enzymology , Dermatitis, Atopic/immunology , Dinitrochlorobenzene/immunology , Dinitrochlorobenzene/toxicity , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Gene Expression Profiling , Humans , In Vitro Techniques , Lymphoid Tissue/enzymology , Lymphoid Tissue/immunology , Mice , Mice, Knockout , Protein-Tyrosine Kinases/deficiency , Protein-Tyrosine Kinases/genetics , Psoriasis/drug therapy , Psoriasis/enzymology , Psoriasis/immunology , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Up-Regulation
6.
Chembiochem ; 6(3): 481-90, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15742384

ABSTRACT

Following G protein-coupled receptors (GPCRs), protein kinases have become the second most important class of targets for drug discovery over the last 20 years. While only four kinase inhibitors have reached the market to date (Fasudil for rho-dependent kinase, Rapamycin for TOR, Gleevec for BCR-Abl, and Iressa for EGFR), many more are already in clinical development. A historical overview of kinase inhibitors was recently published by Cohen. [1] After the previous successes, protein kinases are now regarded as attractive, well-drugable targets, and the analysis of the human genome has yielded 518 protein kinases. [2] We can thus expect screening for protein kinase inhibitors to become even more important in the future. In this review we will focus on the early steps of drug discovery programs producing new lead compounds. We will guide the reader through efficient state-of-the-art assay development and high-throughput screening of large chemical libraries for protein kinase inhibitors.


Subject(s)
Drug Evaluation, Preclinical/methods , Protein Kinase Inhibitors/analysis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Humans , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL