Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Publication year range
1.
Plant Foods Hum Nutr ; 79(1): 143-150, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206481

ABSTRACT

Opuntia ficus-indica fruits have been widely used due to their nutritional composition and beneficial effects on health, particularly against chronic diseases such as diabetes, obesity, cardiovascular diseases and cancer, among others. In recent years, prickly pear peel and pulp extracts have been characterised, and a high number of bioactive compounds have been identified. This study aimed to analyse the triglyceride-lowering effect of prickly pear peel and pulp extracts obtained from fruits of three varieties (Pelota, Sanguinos, and Colorada) in 3T3-L1 maturing and mature adipocytes. At a concentration of 50 µg/mL, peel extracts from Colorada reduced triglyceride accumulation in pre-adipocytes and mature adipocytes. Additionally, at 25 µg/mL, Pelota peel extract decreased triglyceride content in mature adipocytes. Moreover, maturing pre-adipocytes treated with 50 and 25 µg/mL of Sanguinos pulp extract showed a reduction of triglyceride accumulation. In addition, the lipid-lowering effect of the main individual betalain and phenolic compounds standards were assayed. Piscidic acid and isorhamnetin glycoside (IG2), found in Colorada peel extract, were identified as the bioactive compounds that could contribute more notably to the triglyceride-lowering effect of the extract. Thus, the betalain and phenolic-rich extracts from Opuntia ficus indica fruits may serve as an effective tool in obesity management.


Subject(s)
Opuntia , Mice , Animals , Fruit/chemistry , 3T3-L1 Cells , Phenols/analysis , Betalains , Plant Extracts/pharmacology , Triglycerides , Lipids
2.
Nat Prod Res ; 38(6): 916-925, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37129014

ABSTRACT

Obesity is a metabolic disorder with excessive body fat accumulation, increasing incidence of chronic metabolic diseases. Hypertrophic obesity is associated with local oxidative stress and inflammation. Herein, we evaluated the in vitro activity of micromolar concentrations of α-lipoic acid (ALA) on palmitic acid (PA)-exposed murine hypertrophic 3T3-L1 adipocytes, focussing on the main molecular pathways involved in adipogenesis, inflammation, and insulin resistance. ALA, starting from 1 µM, decreased adipocytes hypertrophy, reducing PA-triggered intracellular lipid accumulation, PPAR-γ levels, and FABP4 gene expression, and counteracted PA-induced intracellular ROS levels and NF-κB activation. ALA reverted PA-induced insulin resistance, restoring PI3K/Akt axis and inducing GLUT-1 and glucose uptake, showing insulin sensitizing properties since it increased their basal levels. In conclusion, this study supports the potential effects of low micromolar ALA against hypertrophy, inflammation, and insulin resistance in adipose tissue, suggesting its important role as pharmacological supplement in the prevention of conditions linked to obesity and metabolic syndrome.


Subject(s)
Insulin Resistance , Thioctic Acid , Animals , Mice , Thioctic Acid/pharmacology , Palmitic Acid/pharmacology , Phosphatidylinositol 3-Kinases , Adipocytes , Hypertrophy/chemically induced , Obesity , Inflammation
3.
Fitoterapia ; 170: 105626, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37516404

ABSTRACT

Obesity-related metabolic disorders are increasing at an alarming rate worldwide. The FDA has approved many molecules for weight loss therapy; most of them act on the gut level by inhibiting lipid uptake or on the central nervous system by controlling appetite. Limitations and drawbacks have propelled the search for new pharmacophores exhibiting favourable metabolic alteration at adipocytes, and natural products have always been there to prove their worth. In our efforts, we have identified 16-hydroxy-ent-halima-5(10),13-dien-15,16-olide (PLH), a halimane diterpene isolated from Polyalthia longifolia, demonstrating anti-adipogenic and anti-dyslipidemic activity. It inhibited adipogenesis in 3T3-L1 preadipocyte and C3H10T1/2 mesenchymal stem cell lines. Furthermore, it decreased set of adipogenic markers at transcript and protein levels. Cell cycle studies indicated that PLH halts the mitotic clonal expansion. Mechanistic studies shows that PLH activate Wnt/ß-catenin signaling pathway to inhibit the adipogenesis. The study suggested that PLH inhibited adipogenesis during the early phase of differentiation by targeting mitotic clonal expansion and arresting the cell cycle in the G1 phase of the cell cycle. It improved the dyslipidemic condition in HFD-fed hamsters by decreasing the body weight, fat mass, eWAT weight and improving the serum lipid profile. Overall, PLH has been found as a potential drug candidate and a pharmacophore for combating metabolic disorders including obesity and dyslipidemia.


Subject(s)
Dyslipidemias , Polyalthia , Cricetinae , Animals , Humans , Mice , Adipogenesis , Molecular Structure , Cell Differentiation , Obesity/drug therapy , Dyslipidemias/drug therapy , Lipids , 3T3-L1 Cells
4.
Front Pharmacol ; 14: 1176443, 2023.
Article in English | MEDLINE | ID: mdl-37251344

ABSTRACT

Introduction: The global prevalence of obesity is rising rapidly. Conversion of white adipose tissue (WAT) into beige adipose tissue with heat-consuming characteristics, i.e., WAT browning, effectively inhibits obesity. Dai-Zong-Fang (DZF), a traditional Chinese medicine formula, has long been used to treat metabolic syndrome and obesity. This study aimed to explore the pharmacological mechanism of DZF against obesity. Methods: In vivo, C57BL/6J mice were fed high-fat diets to establish the diet-induced obese (DIO) model. DZF (0.40 g/kg and 0.20 g/kg) and metformin (0.15 g/kg, positive control drug) were used as intervention drugs for six weeks, respectively. The effects of DZF on body size, blood glucose and lipid level, structure and morphology of adipocytes and browning of inguinal WAT (iWAT) in DIO mice were observed. In vitro, mature 3T3-L1 adipocytes were used as the model. Concentrations of DZF (0.8 mg/mL and 0.4 mg/mL) were selected according to the Cell Counting Kit-8 (CCK8). After 2d intervention, lipid droplet morphology was observed by BODIPY493/503 staining, and mitochondria number was observed by mito-tracker Green staining. H-89 dihydrochloride, a PKA inhibitor, was used to observe the change in browning markers' expression. The expression levels of browning markers UCP1 and PGC-1α and key molecules of PKA pathway were detected in vivo and in vitro. Results: In vivo, compared with vehicle control group, 0.40 g/kg DZF significantly reduced obesity in DIO mice from body weight, abdomen circumference, Lee's index, and WAT/body weight (p < 0.01 or p < 0.001). 0.40 g/kg DZF also significantly reduced fasting blood glucose (FBG), serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (p < 0.01 or p < 0.001). The iWAT's morphology and mitochondria were browning after DZF intervention. In HE-staining, the lipid droplets became smaller, and the number of mitochondria increased. The mitochondrial structure was remodeled under the electron microscope. The expression of UCP1, PGC-1α and PKA was elevated in iWAT detected by RT-qPCR (p < 0.05 or p < 0.001). In vitro, compared with the control group, 0.8 mg/mL DZF intervention significantly increased the number of mitochondria and expression of UCP1, PGC-1α, PKA, and pCREB (p < 0.05 or p < 0.01). In contrast, UCP1 and PGC-1α expression were significantly reversed after adding PKA inhibitor H-89 dihydrochloride. Conclusion: DZF can promote UCP1 expression by activating the PKA pathway, thereby promoting browning of WAT, attenuating obesity, and reducing obesity-related glucose and lipid metabolism abnormalities, indicating that DZF has the potential to be selected as an anti-obesity drug to benefit obese patients.

5.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241795

ABSTRACT

Our early work indicated that methanolic extracts from the flowers, leaves, bark, and isolated compounds of Acacia saligna exhibited significant antioxidant activities in vitro. The overproduction of reactive oxygen species (ROS) in the mitochondria (mt-ROS) interfered with glucose uptake, metabolism, and its AMPK-dependent pathway, contributing to hyperglycemia and diabetes. This study aimed to screen the ability of these extracts and isolated compounds to attenuate the production of ROS and maintain mitochondrial function via the restoration of mitochondrial membrane potential (MMP) in 3T3-L1 adipocytes. Downstream effects were investigated via an immunoblot analysis of the AMPK signalling pathway and glucose uptake assays. All methanolic extracts effectively reduced cellular ROS and mt-ROS levels, restored the MMP, activated AMPK-α, and enhanced cellular glucose uptake. At 10 µM, (-)-epicatechin-6 (from methanolic leaf and bark extracts) markedly reduced ROS and mt-ROS levels by almost 30% and 50%, respectively, with an MMP potential ratio 2.2-fold higher compared to the vehicle control. (-)-Epicatechin 6 increased the phosphorylation of AMPK-α by 43%, with an 88% higher glucose uptake than the control. Other isolated compounds include naringenin 1, naringenin-7-O-α-L-arabinopyranoside 2, isosalipurposide 3, D-(+)-pinitol 5a, and (-)-pinitol 5b, which also performed relatively well across all assays. Australian A. saligna active extracts and compounds can reduce ROS oxidative stress, improve mitochondrial function, and enhance glucose uptake through AMPK-α activation in adipocytes, supporting its potential antidiabetic application.


Subject(s)
Acacia , Catechin , Hypoglycemic Agents , Animals , Mice , 3T3-L1 Cells , Acacia/chemistry , Adipocytes/metabolism , AMP-Activated Protein Kinases/metabolism , Australia , Catechin/chemistry , Catechin/pharmacology , Glucose/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism
6.
J Microbiol Biotechnol ; 33(7): 926-933, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37254304

ABSTRACT

Aspergillus oryzae KCCM 11372 was used to enhance the production of ß-glucan using humidity control strategies. Under conditions of 60% humidity, solid-state fermentation (SSF) increased the yields of enzymes (amylase and protease), fungal biomass (ergosterol), and ß-glucan. The maximum concentrations obtained were 14800.58 U/g at 72 h, 1068.14 U/g at 120 h, 1.42 mg/g at 72 h, and 12.0% (w/w) at 72 h, respectively. Moreover, the ß-glucan containing fermented brown rice (ß-glucan-FBR) extracts at concentrations of 25-300 µg/ml was considered noncytotoxic to 3T3-L1 preadipocytes. We then studied the inhibitory effects of the extracts on fat droplet formation in 3T3-L1 cells. As a result, 300 µg/ml of ß-glucan-FBR extracts showed a high inhibition of 38.88% in lipid accumulation. Further, these extracts inhibited adipogenesis in the 3T3-L1 adipocytes by decreasing the expression of C/EBPα, PPARγ, aP2, and GLUT4 genes.


Subject(s)
Oryza , beta-Glucans , Mice , Animals , Oryza/metabolism , 3T3-L1 Cells , Obesity/metabolism , Cell Differentiation , Adipogenesis , Adipocytes , Plant Extracts/pharmacology , Plant Extracts/metabolism , beta-Glucans/pharmacology , beta-Glucans/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism
7.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36982490

ABSTRACT

A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In this context, the present study showed how the peel and seed extracts of mango (Mangifera indica L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1 adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation. In addition, mango extracts down-regulated the adipogenic transcription factor PPARγ as well as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1. Collectively, these results suggest that the intake of mango extract-enriched foods in association with a correct lifestyle could exert beneficial effects to counteract obesity.


Subject(s)
Mangifera , Humans , Mice , Animals , Palmitates/toxicity , Palmitates/metabolism , 3T3-L1 Cells , Reactive Oxygen Species/metabolism , Adipocytes/metabolism , Obesity/metabolism , Adipogenesis , Hypertrophy/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Seeds/metabolism , Transcription Factors/metabolism
8.
Chem Biodivers ; 20(3): e202200784, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36717756

ABSTRACT

Potentilla anserina L., a well-known perennial herb, is widely used in traditional Tibetan medicine and used as a delicious food in humans. The present investigation reports on the activity of P. anserina phenols (PAP) in regulating glycolipid metabolism in 3T3-L1 adipocytes. Insulin sensitivity tests showed that PAP improved insulin-stimulated glucose uptake by promoting the phosphorylation of serine/threonine kinase Akt. Moreover, an assay involving the differentiation of 3T3-L1 preadipocytes demonstrated that PAP also decreased the accumulation of lipid droplets by suppressing the expression of adipokines during the differentiation process. In addition, the underlying mechanism from the aspects of energy metabolism and oxidative stress is also discussed. The improvement in energy metabolism was supported by an increase in mitochondrial membrane potential (MMP) and intracellular ATP. Amelioration of oxidative stress was supported by decreased levels of intracellular reactive oxygen species (ROS). In summary, our findings suggest that PAP can ameliorate the disorder of glycolipid metabolism in insulin resistant 3T3-L1 adipocytes by improving energy metabolism and oxidative stress and might be an attractive candidate for the treatment of diabetes.


Subject(s)
Insulin Resistance , Phenols , Potentilla , Animals , Mice , 3T3-L1 Cells/drug effects , Adipocytes/drug effects , Glucose/metabolism , Glycolipids , Insulin/metabolism , Potentilla/chemistry , Potentilla/metabolism , Phenols/chemistry , Phenols/pharmacology
9.
Obes Res Clin Pract ; 17(1): 74-81, 2023.
Article in English | MEDLINE | ID: mdl-36494293

ABSTRACT

AIMS: Naringin, a flavonoid present in citrus fruits, has been known for the capacity to reduce lipid synthesis and anti-inflammatory. In this study, we investigated whether naringin increases lipolysis and fatty acid ß-oxidation to change fat deposition. METHODS: In in vivo experiment, obese adult mice (20-weeks-old, n = 18) were divided into control group fed with normal diet and naringin-treated group fed with naringin-supplemented diet (5 g/kg) for 60 days, respectively. In in vitro experiment, differentiated 3T3-L1 adipocytes were treated for four days with or without naringin (100 µg/mL). RESULTS: Supplementing naringin significantly reduced the body weight, abdominal fat weight, blood total cholesterol content of mice, but did not affect food intake. In addition, naringin decreased levels of pro-inflammatory factors in adipose tissue including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Naringin increased the expression of AMP-activated protein kinase (AMPK), a key factor in cellular energy metabolism, and raised the ratio of p-AMPK/AMPK in mouse liver tissue. The protein expression of hormone-sensitive lipase (HSL), phospho-HSL563 (p-HSL563), p-HSL563/HSL, and adipocyte triglyceride lipase (ATGL) was significantly increased in the adipose tissue of naringin-treated mice. Furthermore, naringin enhanced the expression of fatty acid ß-oxidation genes, including carnitine palmitoyl transferase 1 (CPT1), uncoupling protein 2 (UCP2), and acyl-coenzyme A oxidase 1 (AOX1) in mouse adipose tissue. In in vitro experiment, similar findings were observed in differentiated 3T3-L1 adipocytes with naringin treatment. The treatment remarkably reduced intracellular lipid content, increased the number of mitochondria and promoted the gene expression of HSL, ATGL, CPT1, AOX1, and UCP2 and the phosphorylation of HSL protein. CONCLUSION: Naringin reduced body fat in obese mice and lipid content in differentiated 3T3-L1 adipocytes, which was associated with enhanced AMPK activation and upregulation of the expression of the lipolytic genes HSL, ATGL, and ß-oxidation genes CPT1, AOX1, and UCP2.


Subject(s)
AMP-Activated Protein Kinases , Lipolysis , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Sterol Esterase/metabolism , Lipase , Fatty Acids , Lipids , 3T3-L1 Cells
10.
Nutrients ; 14(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364945

ABSTRACT

Akebia quinata, commonly called chocolate vine, has various bioactivities, including antioxidant and anti-obesity properties. However, the anti-obesity effects of bioconverted extracts of A. quinate have not been examined. In this study, A. quinata fruit extracts was bioconverted using the enzyme isolated from the soybean paste fungi Aspergillus kawachii. To determine whether the bioconversion process could influence the anti-obesity effects of A. quinata fruit extracts, we employed 3T3-L1 adipocytes and HFD-induced obese rats. We observed that the bioconverted fruit extract of A. quinata (BFE) afforded anti-obesity effects, which were stronger than that for the non-bioconverted fruit extract (FE) of A. quinata. In 3T3-L1 adipocytes, treatment with BFE at concentrations of 20 and 40 µg reduced intracellular lipids by 74.8 (p < 0.05) and 54.9% (p < 0.01), respectively, without inducing cytotoxicity in preadipocytes. Moreover, the oral administration of BFE at the concentration of 300 mg/kg/day significantly reduced body and adipose tissue weights (p < 0.01) in HFD-induced obese rats. Plasma cholesterol values were reduced, whereas HDL was increased in BFE receiving rats. Although FE could exert anti-obesity effects, BFE supplementation induced more robust effects than FE. These results could be attributed to the bioconversion-induced alteration of bioactive compound content within the extract.


Subject(s)
Anti-Obesity Agents , Diet, High-Fat , Mice , Rats , Animals , Diet, High-Fat/adverse effects , Anti-Obesity Agents/pharmacology , Adipogenesis , Fruit , 3T3-L1 Cells , Obesity/drug therapy , Obesity/etiology , Plant Extracts/pharmacology , Mice, Inbred C57BL
11.
Nutrients ; 14(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36297098

ABSTRACT

In folk medicine, Ficus tikoua (F. tikoua) has been used to treat diabetes for a long time, but there is a rare modern pharmacological investigation for its antidiabetic effect and mechanisms. Our study aimed to evaluate its hypoglycemic effect using in vitro and in vivo experimental models and then explore the possible mechanisms. In the ethanol extracts and fractions of F. tikoua, n-butanol fraction (NBF) exhibited the most potent effect on inhibiting α-glucosidase activity (IC50 = 0.89 ± 0.04 µg/mL) and promoting glucose uptake in 3T3-L1 adipocytes. Further animal experiments showed that NBF could play an antidiabetic role by ameliorating random blood glucose, fasting blood glucose, oral glucose tolerance, HbA1c level, and islets damage in diabetic mice. Then, the activities of the five subfractions of NBF (NBF1-NBF5) were further evaluated; NBF2 showed stronger α-glucosidase inhibition activities (IC50 = 0.32 ± 0.05 µg/mL) than NBF. Moreover, NBF2 also possessed the ability to promote glucose uptake, which was mediated via P13K/AKT and AMPK pathways. This study demonstrated that F. tikoua possesses antidiabetic efficacy in vitro and in vivo and provided a scientific basis for its folk medicinal use. NBF2 might be potential natural candidate drugs to treat diabetes mellitus. It is the first time the antidiabetic activity and the potential mechanisms of NBF2 were reported.


Subject(s)
Diabetes Mellitus, Experimental , Ficus , Plant Extracts , Animals , Mice , alpha-Glucosidases/metabolism , AMP-Activated Protein Kinases , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Ethanol , Ficus/chemistry , Glycated Hemoglobin , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt
12.
Am J Chin Med ; 50(5): 1315-1329, 2022.
Article in English | MEDLINE | ID: mdl-35642460

ABSTRACT

The aim of this study is to investigate the molecular mechanism of Smilax china L. polyphenols (SCLPs) in enhancing lipid metabolism and stimulating browning to reduce lipid accumulation in 3T3-L1 adipocytes. SCLP treatment obviously decreased lipid content in a dose-dependent manner (10-40 µg/mL) in adipocytes. SCLP treatment cooperated with noradrenalin to increase lipolysis. SCLPs reduced the gene expressions of C/EBP[Formula: see text] and Ap2 and enhanced the expressions of ACO, CPT, pHSL/HSL, ATGL, and PKA in adipocytes. Furthermore, SCLPs increased mRNA and protein expressions of brown adipocyte-specific factors (UCP-1, PRDM16, PGC-1α, and PPARγ) and mRNA expressions of beige adipocyte-specific markers (CD137, Tbx1, and Tmem26) in 3T3-L1 adipocytes, as well as mitochondrial biogenesis genes (Nrf1 and Tfam). In addition, according to the immunofluorescence staining, the mitochondria number was increased by SCLP. Moreover, ß3-AR or AMPK agonist synergistic SCLPs enhanced the expressions of UCP-1, PRDM16, and PGC-1α. While ß3-AR or AMPK antagonist significantly decreased the expressions of these brown adipocyte-specific factors, SCLP treatment inhibited the effect of antagonist to improve the expression of UCP-1, PRDM16, and PGC-1α. These results indicated that SCLPs may regulate lipid metabolism and stimulate browning via the ß3-AR/AMPKα signaling pathway. Thus, SCLPs likely have potential therapeutic effects on obesity.


Subject(s)
AMP-Activated Protein Kinases , Smilax , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Adipocytes, Brown/metabolism , Animals , China , Lipids , Mice , Polyphenols/metabolism , Polyphenols/pharmacology , RNA, Messenger/metabolism , Receptors, Adrenergic/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
13.
J Pharm Pharmacol ; 74(8): 1170-1179, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35579414

ABSTRACT

OBJECTIVES: The purpose of this paper is to ascertain the effect and mechanism of Radix Isatidis polysaccharide (RIP) on obesity. METHODS: High fat diet (HFD)-induced obese rats and the MDI-induced 3T3-L1 adipocyte cells were established to evaluate the ameliorated obesity effect and mechanism from RIP. KEY FINDINGS: Experiments in vivo show that oral administration of RIP has significant preventive effects on HFD-induced obesity and metabolic disorders in rats. With treatment of RIP (20, 40 and 80 mg/kg BW), the body weight, fat accumulation, adipocyte cell size, serum lipid levels and antioxidant enzyme activity were progressively improved. On the other hand, the treatment of 3T3-L1 cells with RIP (25, 50 and 100 mg/L) led to a decrease in lipid accumulation and glucose consumption. In addition, during adipogenesis in 3T3-L1 cells, RIP remarkably down-regulated mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), acetyl-CoA carboxylase and glycerol-3-phosphate dehydrogenase. Furthermore, after RIP treatment, the protein expression of PPARγ, C/EBPα, FAS, HMG-CoA reductase and acetyl-CoA synthetase-1 (AceCS1) were significantly decreased and the expression of p-AMPK was increased. CONCLUSION: These results highlight the potential of RIP for obesity interventions and suggest that RIP inhibited adipocyte differentiation and lipid synthesis by activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signalling pathway and down-regulating the expression of major adipogenic transcription factors, PPARγ, C/EBPα, etc.


Subject(s)
Anti-Obesity Agents , Diet, High-Fat , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Adipocytes/metabolism , Adipogenesis , Animals , Anti-Obesity Agents/pharmacology , Body Weight , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Diet, High-Fat/adverse effects , Drugs, Chinese Herbal , Lipids , Mice , Obesity/drug therapy , Obesity/metabolism , Obesity/prevention & control , PPAR gamma/metabolism , Polysaccharides/pharmacology , Rats
14.
Biosci Biotechnol Biochem ; 86(5): 665-671, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35234829

ABSTRACT

Mango (Mangifera indica L.) kernels are usually discarded as waste, but they contain many pharmacological properties and bioactivities. In this study, we isolated antiobesity agents from mango kernels that inhibit intracellular lipid formation in 3T3-L1 adipocytes. Two phenolic acids, ethyl gallate and ethyl digallate, and 2 tannin acids, 1,2,3,4,6-penta-O-galloyl-ß-d-glucose (PGG) and 3-O-digalloyl-1,2,4,6-tetra-O-ß-d-glucose (HGG), were identified from mango kernels and were found to be suppressed lipid accumulation as evidenced by Oil Red O staining. Furthermore, ethyl digallate, PGG, and HGG significantly downregulated the mRNA expression of adipogenic transcription factors such as C/EBPα and PPARγ. However, ethyl gallate did not affect the expression of these transcription factors. Our findings reveal the presence of antiobesity compounds in mango kernels, implying its therapeutic role against obesity.


Subject(s)
Mangifera , 3T3-L1 Cells , Adipogenesis , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Lipid Metabolism , Lipids , Mice , PPAR gamma/metabolism , Plant Extracts/pharmacology , Tannins/metabolism , Tannins/pharmacology
15.
J Med Food ; 25(3): 272-280, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35320012

ABSTRACT

Tamarixetin (TX) is an O-methylated flavonoid naturally derived from quercetin. TX has bioactive properties; however, whether it shows antilipogenic activity remains unknown. Therefore, in the present study, we aimed to determine the antilipogenic effects of TX using 3T3-L1 adipocytes. The 3T3-L1 adipocytes were cultured in a differentiation medium with or without TX. Lipid accumulation was diminished and the mRNA expression of lipogenesis-related genes was decreased following TX treatment. We found that TX exhibited antilipogenic effects by inhibiting the expression of p300/CBP-associated factor (pCAF), a histone acetyltransferase, as confirmed by pCAF knockdown. Furthermore, TX inhibited both pCAF expression and its activity, thereby reducing the total acetylation level of nonhistone and histone proteins. Finally, TX decreased the expression of CCAAT/enhancer-binding protein alpha and beta (CEBPα and CEBPß), and peroxisome proliferator-activated receptor γ along with pCAF expression during adipogenesis of 3T3-L1 cells in a time-dependent manner. Collectively, our findings suggest that TX is a potent antilipogenic agent derived from natural products and may be used as a pCAF inhibitor.


Subject(s)
Adipogenesis , Quercetin , 3T3-L1 Cells , Animals , Disaccharides/pharmacology , Mice , Quercetin/analogs & derivatives , Quercetin/pharmacology
16.
Phytomedicine ; 98: 153959, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35134622

ABSTRACT

BACKGROUND: Obesity is a worldwide problem that resulted from the excessive fat accumulation in adipose tissue, leading to the impairment of individual health. Mulberry leaf is an important traditional Chinese medicine and has been used to alleviate obesity for a long term. However, its underlying molecular mechanisms have not been fully elucidated yet. PURPOSE: In this study, we aimed to investigate the inhibition effects of mulberry leaf water extract (MLWE) on lipid accumulation during the process of differentiation of 3T3-L1 preadipocytes and development of mature adipocytes through the combination of molecular biology assays and metabolomic analysis. METHODS: The quality consistency and main chemical ingredients of MLWE were analyzed by high performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), respectively. Oil red O staining was used to mirror lipid accumulation. Lipogenesis-, lipolysis- and inflammation-related genes were evaluated by real-time PCR and western blot, respectively. Untargeted metabolomics were performed by LC-MS/MS. RESULTS: Prepared method and quality of MLWE were stable and reliable. A total of 34 compounds were identified and 14 of them were undoubtedly confirmed. MLWE supplementation could dose-dependently inhibit the aggregation of lipid droplets, and the expressions of sterol regulatory element-binding protein (SREBP)-1c, peroxisome proliferator-activated receptor (PPAR) γ, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), tumor necrosis factor (TNF)-α and interleukin (IL)-6, and increase the expressions of adenosine monophosphate-activated protein kinase (AMPK), hormone-sensitive lipase (HSL) and IL-10 in the differentiation of preadipocytes. Furthermore, MLWE treatment could dose-dependently decrease the level of triglycerides and the expressions of ACC, FAS, TNF-α, and IL-6, and up-regulate the level of glycerol and the expressions of PPARα, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, AMPK, HSL, and IL-10 in the development of mature adipocytes. Untargeted metabolomics showed that a total of 5 and 18 differential metabolites were reversed by MLWE intervention in the differentiation of preadipocytes and the development of mature adipocytes, respectively, which involved in the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism and glycerophospholipids metabolism. CONCLUSION: Taken together, this study firstly verified that MLWE could effectively alleviate lipid accumulation and inflammation by regulating ADPN/AMPK-mediated signaling pathways and relevant metabolic disturbances including biosynthesis of unsaturated fatty acids, arachidonic acid metabolism and glycerophospholipids metabolism.

17.
Nutrients ; 13(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803343

ABSTRACT

Oxidative stress and dysregulated adipocytokine secretion accompanying hypertrophied adipose tissue induce chronic inflammation, which leads to vascular endothelial dysfunction. The present study investigated the ability of anthocyanin (ACN) and non-anthocyanin polyphenol (PP) fractions from lingonberry fruit to mitigate adipose tissue hypertrophy and endothelial dysfunction using 3T3-L1 adipocytes and human umbilical vein endothelial cells (HUVECs). This study showed that the PP fraction decreased intracellular ROS generation in hypertrophied adipocytes by enhancing antioxidant enzyme expression (SOD2) and inhibiting oxidant enzyme expression (NOX4, iNOS). Moreover, PP and ACN fractions reduced triglyceride content in adipocytes accompanied by downregulation of the expression of lipogenic genes such as aP2, FAS, and DAGT1. Treatment with both fractions modulated the mRNA expression and protein secretion of key adipokines in hypertrophied adipocytes. Expression and secretion of leptin and adiponectin were, respectively, down- and upregulated. Furthermore, PP and ACN fractions alleviated the inflammatory response in TNF-α-induced HUVECs by inhibiting the expression of pro-inflammatory genes (IL-6, IL-1ß) and adhesion molecules (VCAM-1, ICAM-1, SELE). The obtained results suggest that consuming polyphenol-rich lingonberry fruit may help prevent and treat obesity and endothelial dysfunction due to their antioxidant and anti-inflammatory actions.


Subject(s)
Adipocytes/drug effects , Endothelium, Vascular/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Vaccinium vitis-idaea/chemistry , 3T3-L1 Cells , Adipokines/metabolism , Adipose Tissue/drug effects , Animals , Anthocyanins/pharmacology , Antioxidants/pharmacology , Fruit , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hypertrophy , Mice , Obesity/drug therapy , Reactive Oxygen Species/metabolism
18.
Eur J Pharmacol ; 892: 173689, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33127360

ABSTRACT

Portulaca oleracea L. is used as a folk medicine in many countries because of its wide range of pharmacological effects. HM-chromanone, isolated from P. oleracea using bioassay-guided fractionation and HPLC, belongs to the homoisoflavonoid group and has been shown to exert several biological effects. In this study, we evaluated whether HM-chromanone inhibits adipogenesis by regulating adipogenic transcription factors in 3T3-L1 adipocytes. The results showed that HM-chromanone suppresses adipocyte differentiation and adipogenesis in a dose-dependent manner in 3T3-L1 adipocytes. The HM-chromanone-treated adipocytes exhibited lower triglyceride accumulation and leptin secretion, and higher glycerol and adiponectin secretion than the control adipocytes. Microscopic observation using oil red O staining revealed a dose-dependent reduction in the number of lipid droplets in the HM-chromanone-treated adipocytes compared to the control group. HM-chromanone significantly down-regulated the protein expression of major adipogenic transcription factors sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα) and markedly inhibited several key adipogenic enzymes including fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) were both more activated in the HM-chromanone-treated adipocytes than in the control adipocytes. HM-chromanone also promoted the phosphorylation of 5' Adenosine monophosphate-activated protein kinase (AMPK), which inhibits adipogenesis through the regulation of adipogenic transcription factors. These results suggest that HM-chromanone may be an effective anti-adipogenesis agent that functions via the suppression of adipogenic transcription factors and the activation of AMPK.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes/drug effects , Adipogenesis/drug effects , Anti-Obesity Agents/pharmacology , Isoflavones/pharmacology , Transcription Factors/metabolism , 3T3-L1 Cells , Adipocytes/enzymology , Adipocytes/pathology , Adipogenesis/genetics , Animals , Gene Expression Regulation , Lipid Metabolism/drug effects , Mice , Phosphorylation , Signal Transduction , Transcription Factors/genetics
19.
BMC Complement Med Ther ; 20(1): 373, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33298044

ABSTRACT

BACKGROUND: 4-Hydroxyisoleucine (4-HIL) is an active ingredient extracted from Trigonella foenum-graecum L., a Chinese traditional herbal medicine, which exerts the efficacy of anti-obesity and anti-diabetes. We previously reported that 4-HIL potentiates anti-inflammatory and anti-insulin resistance effects through down-regulation of TNF-α and TNF-α converting enzyme (TACE) in 3 T3-L1 adipocytes and HepG2 cells. In the present study, we further investigate the effects and mechanisms of 4-HIL on obesity-induced inflammation in RAW264.7 macrophages and 3 T3-L1 adipocytes co-culture system. METHODS: RAW264.7 macrophages and 3 T3-L1 adipocytes were co-cultured to mimic the microenvironment of adipose tissue. siRNA-iRhom2 transfection was performed to knockdown iRhom2 expression in RAW264.2 macrophages. The mRNA and protein expression of iRhom2 and TACE were measured by real-time quantitative PCR (RT-qPCR) and western blotting. The production of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), IL-6 and IL-10 were evaluated by ELISA. The ratio of M2/M1 was detected by flow cytometry. RESULTS: 4-HIL significantly repressed the mRNA and protein levels of iRhom2 and TACE in RAW264.7 macrophages after LPS stimulated. Meanwhile, the levels of pro-inflammatory cytokines, including TNF-α, MCP-1, and IL-6, were substantially suppressed by 4-HIL in the co-culture system. Moreover, the level of anti-inflammatory cytokine IL-10 was increased significantly by 4-HIL in the co-culture system after LPS stimulation. Additionally, the ratio of M2/M1 was also increased by 4-HIL in the co-culture system after LPS stimulation. Finally, these effects of 4-HIL were largely enhanced by siRNA-iRhom2 transfection. CONCLUSION: Taken together, our results indicated that obesity-induced inflammation was potently relieved by 4-HIL, most likely through the iRhom2-dependent pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Intracellular Signaling Peptides and Proteins/metabolism , Isoleucine/analogs & derivatives , Medicine, Chinese Traditional/methods , 3T3-L1 Cells , Animals , Coculture Techniques , Isoleucine/pharmacology , Lipopolysaccharides , Mice , RAW 264.7 Cells
20.
J Exp Pharmacol ; 12: 363-369, 2020.
Article in English | MEDLINE | ID: mdl-33116951

ABSTRACT

BACKGROUND: There would be over 600 million people living with diabetes by 2040 as predicted by the World Health Organization. Diabetes is characterized by raised blood sugar and insulin resistance. Insulin regulates the influx of glucose into the cell by upregulating the glucose transporter type 4 (GLUT4) expression on the plasma membrane. Besides, PPAR-γ also controls the metabolism of glucose in adipose tissues. Curcuma mangga Val., denoted as C. mangga, is a native Indonesian medicinal plant that has many beneficial effects, including an antidiabetic potential. PURPOSE: In this research, we aimed to disclose the hypoglycemic activity of ethanol extract of C. mangga (EECM) in 3T3-L1 fibroblasts-derived adipocyte cells in regulating glucose uptake as confirmed by the GLUT4 and PPAR-γ gene expression. METHODS: The uptake of glucose was determined using radioactive glucose, while the gene expression of GLUT4, PPAR-γ, and ß-actin was quantified using mRNA segregation and real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). RESULTS: We discovered that EECM interventions (200 and 50 µg/mL) increased glucose uptake in lipid-laden 3T3-L1 cells by 14.75 and 8.86 fold compared to the control non-insulin, respectively (p < 0.05). At the same doses, they also increased GLUT4 mRNA expression by 8.41 and 11.18 fold compared to the control non-insulin, respectively (p < 0.05). In contrast, EECM interventions (200 and 50 µg/mL) showed lower levels of PPAR-γ mRNA expression compared to the control metformin, indicating the anti-adipogenic potentials of EECM. CONCLUSION: EECM showed hypoglycemic activity in lipid-laden 3T3-L1 cells by improving glucose ingestion into the cells, which was mediated by increased GLUT4 expression and downregulated PPAR-γ expression.

SELECTION OF CITATIONS
SEARCH DETAIL