Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.009
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 329: 118156, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583729

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Throughout Chinese history, Hydrangea paniculata Siebold has been utilized as a traditional medicinal herb to treat a variety of ailments associated to inflammation. In a number of immune-mediated kidney disorders, total coumarins extracted from Hydrangea paniculata (HP) have demonstrated a renal protective effect. AIM OF THE STUDY: To investigate renal beneficial effect of HP on experimental Adriamycin nephropathy (AN), and further clarify whether reversing lipid metabolism abnormalities by HP contributes to its renoprotective effect and find out the underlying critical pathways. MATERIALS AND METHODS: After establishment of rat AN model, HP was orally administrated for 6 weeks. Biochemical indicators related to kidney injury were determined. mRNAs sequencing using kidney tissues were performed to clarify the underlying mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, western blot, molecular docking, and drug affinity responsive target stability (DARTS) assay was carried out to further explore and confirm pivotal molecular pathways and possible target by which HP and 7-hydroxylcoumarin (7-HC) played their renal protection effect via modulating lipid metabolism. RESULTS: HP could significantly improve renal function, and restore renal tubular abnormal lipid metabolism and interstitial fibrosis in AN. In vitro study demonstrated that HP and its main metabolite 7-HC could reduce ADR-induced intracellular lipid deposition and fibrosis characteristics in renal tubular cells. Mechanically, HP and 7-HC can activate AMP-activated protein kinase (AMPK) via direct interaction, which contributes to its lipid metabolism modulation effect. Moreover, HP and 7-HC can inhibit fibrosis by inhibiting CCAAT/enhancer binding protein beta (C/EBPß) expression in renal tubular cells. Normalization of lipid metabolism by HP and 7-HC further provided protection of mitochondrial structure integrity and inhibited the nuclear factor kappa-B (NF-κB) pathway. Long-term toxicity using beagle dogs proved the safety of HP after one-month administration. CONCLUSION: Coumarin derivates from HP alleviate adriamycin-induced lipotoxicity and fibrosis in kidney through activating AMPK and inhibiting C/EBPß.


Subject(s)
AMP-Activated Protein Kinases , CCAAT-Enhancer-Binding Protein-beta , Coumarins , Doxorubicin , Hydrangea , Animals , Doxorubicin/toxicity , Coumarins/pharmacology , Coumarins/isolation & purification , Male , CCAAT-Enhancer-Binding Protein-beta/metabolism , AMP-Activated Protein Kinases/metabolism , Rats , Hydrangea/chemistry , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Rats, Sprague-Dawley , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , Molecular Docking Simulation , Lipid Metabolism/drug effects , Cell Line , Plant Extracts/pharmacology , Plant Extracts/chemistry , Umbelliferones
2.
J Ethnopharmacol ; 329: 118165, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588984

ABSTRACT

BACKGROUND: Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE: This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS: UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS: 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and ß-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION: XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.


Subject(s)
AMP-Activated Protein Kinases , Diet, High-Fat , Drugs, Chinese Herbal , Lipid Metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , AMP-Activated Protein Kinases/metabolism , Male , Mice , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Disease Models, Animal
3.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38592738

ABSTRACT

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Subject(s)
AMP-Activated Protein Kinases , Adenosine Diphosphate , Adenosine Monophosphate , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Humans , Allosteric Regulation , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/chemistry , Ligands , Phosphorylation , Adenosine Triphosphate/metabolism , Enzyme Activation , Protein Binding
4.
J Ethnopharmacol ; 328: 118058, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513778

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY: To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS: Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS: In total, 114 compounds from the water extract of BYD were identified as major compounds. Na2SO3-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION: Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.


Subject(s)
AMP-Activated Protein Kinases , Amidines , Drugs, Chinese Herbal , Animals , Zebrafish , Oxidative Stress , Fatigue/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammation/drug therapy , Antioxidants , Signal Transduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
J Ethnopharmacol ; 327: 118054, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38484950

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Globally, the incidence rate and number of patients with nonalcoholic fatty liver disease are increasing, which has become one of the greatest threats to human health. However, there is still no effective therapy and medicine so far. Silphium perfoliatum L. is a perennial herb native to North America, which is used to improve physical fitness and treat liver and spleen related diseases in the traditional medicinal herbs of Indian tribes. This herb is rich in chlorogenic acids, which have the functions of reducing blood lipids, losing weight and protecting liver. However, the effect of these compounds on nonalcoholic fatty liver disease remains unclear. AIM OF THE STUDY: Clarify the therapeutic effects and mechanism of the extract (CY-10) rich in chlorogenic acid and its analogues from Silphium perfoliatum L. on non-alcoholic fatty liver disease, and to determine the active compounds. MATERIALS AND METHODS: A free fatty acid-induced steatosis model of HepG2 cells was established to evaluate the in vitro activity of CY-10 in promoting lipid metabolism. Further, a high-fat diet-induced NAFLD model in C57BL/6 mice was established to detect the effects of CY-10 on various physiological and biochemical indexes in mice, and to elucidate the in vivo effects of the extract on regulating lipid metabolism, anti-inflammation and hepatoprotection, and nontarget lipid metabolomics was performed to analyze differential metabolites of fatty acids in the liver. Subsequently, western blotting and immunohistochemistry were used to analyze the target of the extract and elucidate its mechanism of action. Finally, the active compounds in CY-10 were elucidated through in vitro activity screening. RESULTS: The results indicated that CY-10 significantly attenuated lipid droplet deposition in HepG2 cells. The results of in vivo experiments showed that CY-10 significantly reduce HFD-induced mouse body weight and organ index, improve biochemical indexes, oxidation levels and inflammatory responses in the liver and serum, thereby protecting the liver tissue. It can promote the metabolism of unsaturated fatty acids in the liver and reduce the generation of saturated fatty acids. Furthermore, it is clarified that CY-10 can promote lipid metabolism balance by regulating AMPK/FXR/SREPB-1c/PPAR-γ signal pathway. Ultimately, the main active compound was proved to be cryptochlorogenic acid, which has a strong promoting effect on the metabolism of fatty acids in cells. Impressively, the activities of CY-10 and cryptochlorogenic acid were stronger than simvastatin in vitro and in vivo. CONCLUSION: For the first time, it is clarified that the extract rich in chlorogenic acids and its analogues in Silphium perfoliatum L. have good therapeutic effects on non-alcoholic fatty liver disease. It is confirmed that cryptochlorogenic acid is the main active compound and has good potential for medicine.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Liver , Lipid Metabolism , Fatty Acids/metabolism , Signal Transduction , Diet, High-Fat
6.
J Tradit Complement Med ; 14(2): 203-214, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481546

ABSTRACT

Doxorubicin (DOX), an anthracycline chemotherapy, plays a prominent role in the treatment of various cancers. Unfortunately, its nephrotoxic effects limit its dosing and expose cancer survivors to increased morbidity and mortality. This study examined the nephroprotective effects of eriodictyol, a natural polyphenolic flavanone, in DOX-treated rats and the molecular pathways involved. Forty adult rats were divided into five groups (8/group): Control; eriodictyol (20 mg/kg/day); DOX (2.5 mg/kg, twice/week); DOX + Eriodictyol; and DOX + Eriodictyol + Compound C (CC), an AMPK inhibitor (0.2 mg/kg/day). Experiments continued for 21 days. Eriodictyol administration in DOX-treated rats reduced their fasting glucose levels and increased food intake, final body weight, and kidney weight, improved kidney function, prevented glomerular and tubular damage, and reduced collagen deposition and renal TGF-ß1 mRNA levels. Furthermore, eriodictyol reduced their renal levels of Bax, caspase-3, and cytochrome-c; and enhanced the levels of Bcl2. Noticeably, in the kidneys of both controls and DOX-treated rats, eriodictyol increased levels of phosphorylated-AMPK(Thr172) but not AMPK mRNA nor protein levels. Also, in the same two groups, eriodictyol increased mRNA and nuclear Nrf2 levels, and levels of glutathione, superoxide dismutase, catalase, and hemeoxygenase-1, but reduced the levels of malonaldehyde, TNF-α, and mRNA, total, and nuclear levels of NF-κB. All the detected nephroprotective effects and improvements in the levels of markers of oxidation and inflammation were prevented by coadministration of CC. In conclusion, the coadministration of eriodictyol and DOX alleviates DOX-induced renal damage. In renal tissues, eriodictyol is an AMPK activator and its nephroprotective antioxidant and anti-inflammatory effects are AMPK-dependent.

7.
Article in English | MEDLINE | ID: mdl-38428624

ABSTRACT

Reduced blood flow (hypoxia) to the brain is thought to be the main cause of strokes because it deprives the brain of oxygen and nutrients. An increasing amount of evidence indicates that the Centella-Asiatica (HA-CA) hydroalcoholic extract has a variety of pharmacological benefits, such as antioxidant activity, neuroprotection, anti-inflammatory qualities, and angiogenesis promotion. Intermittent fasting (IF) has neurological benefits such as anti-inflammatory properties, neuroprotective effects, and the ability to enhance neuroplasticity. The current study evaluates the combined effect of IF (for 1, 6, and 12 days) along with HA-CA (daily up to 12 days) in adult zebrafish subjected to hypoxia every 5 min for 12 days followed by behavioral (novel tank and open-field tank test), biochemical (SOD, GSH-Px, and LPO), inflammatory (IL-10, IL-1ß, and TNF-α), mitochondrial enzyme activities (Complex-I, II, and IV), signaling molecules (AMPK, MAPK, GSK-3ß, Nrf2), and imaging/staining (H&E, TTC, and TEM) analysis. Results show that sub-acute hypoxia promotes the behavioral alterations, and production of radical species and alters the oxidative stress status in brain tissues of zebrafish, along with mitochondrial dysfunction, neuroinflammation, and alteration of signaling molecules. Nevertheless, HA-CA along with IF significantly ameliorates these defects in adult zebrafish as compared to their effects alone. Further, imaging analysis significantly provided evidence of infarct damage along with neuronal and mitochondrial damage which was significantly ameliorated by IF and HA-CA. The use of IF and HA-CA has been proven to enhance the physiological effects of hypoxia in all dimensions.


Subject(s)
Centella , Ischemic Stroke , Triterpenes , Animals , Zebrafish/metabolism , Centella/chemistry , Centella/metabolism , Intermittent Fasting , Glycogen Synthase Kinase 3 beta/pharmacology , Antioxidants/metabolism , Oxidative Stress , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Hypoxia
8.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467717

ABSTRACT

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Subject(s)
AMP-Activated Protein Kinases , Aconitine , Cardiotoxicity , Histone Deacetylases , Animals , Mice , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Histone Deacetylases/metabolism , AMP-Activated Protein Kinases/metabolism , Male , Humans , Aconitum/chemistry , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Drugs, Chinese Herbal/pharmacology
9.
Phytomedicine ; 128: 155318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493719

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is an escalating global health issue, characterized by rising rates of morbidity and mortality annually. Consequently, further investigation of potential damage mechanisms and potential preventive strategies for PF are warranted. Specnuezhenide (SPN), a prominent secoiridoid compound derived from Ligustrum lucidum Ait, exhibits anti-inflammatory and anti-oxidative capacities, indicating the potential therapeutic actions on PF. However, the underlying mechanisms of SPN on PF remain unclear. PURPOSE: This work was aimed at investigating the protective actions of SPN on PF and the potential mechanism. METHODS: In vivo, mice were administrated with bleomycin (BLM) to establish PF model. PF mice were treated with SPN (45/90 mg/kg) by gavage. In vitro, we employed TGF-ß1 (10 ng/mL)-induced MLE-12 and PLFs cells, which then were treated with SPN (5, 10, 20 µM). DARTS assay, biofilm interference experiment and molecular docking were performed to investigate the molecular target of SPN. RESULTS: In vivo, we found SPN treatment improved survival rate, alleviated pathological changes through reducing BLM-induced extracellular matrix (ECM) deposition, as well as BLM-induced epithelial-mesenchymal transition (EMT). In vitro, SPN inhibited EMT and lung fibroblast transdifferentiation. Mechanistically, SPN activated the AMPK protein to decrease the abnormally high level of PD-L1. Furthermore, the compound C, known as an AMPK inhibitor, exhibited a significant hindrance to the inhibition of SPN on TGF-ß1-caused fibroblast transdifferentiation and proliferation. This outcome could be attributed to the fact that compound C could eliminate the inhibitory effects of SPN on PD-L1 expression. Interestingly, DARTS assay, biofilm interference experiment and molecular docking results all indicated that SPN could bind to AMPK, which suggested that SPN might be a potential agonist targeting AMPK protein. CONCLUSION: Altogether, the results in our work illustrated that SPN promoted AMPK-dependent reduction of PD-L1 protein, contributing to the inhibition of fibrosis progression. Thus, SPN may represent a potential AMPK agonist for PF treatment.


Subject(s)
B7-H1 Antigen , Bleomycin , Molecular Docking Simulation , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Mice , B7-H1 Antigen/metabolism , AMP-Activated Protein Kinases/metabolism , Male , Disease Models, Animal , Mice, Inbred C57BL , Cell Line , Epithelial-Mesenchymal Transition/drug effects , Fibroblasts/drug effects , Lung/drug effects , Lung/pathology , Transforming Growth Factor beta1/metabolism
10.
Phytomedicine ; 128: 155396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547617

ABSTRACT

BACKGROUND: Abnormalities in glucose metabolism may be the underlying cause of ß-cell dysfunction and identity impairment resulting from high glucose exposure. In China, Coptis deltoidea C. Y. Cheng et Hsiao (YL) has demonstrated remarkable hypoglycemic effects. HYPOTHESIS/PURPOSE: To investigate the hypoglycemic effect of YL and determine the mechanism of YL in treating diabetes. METHODS: A type 2 diabetes mouse model was used to investigate the pharmacodynamics of YL. YL was administrated once daily for 8 weeks. The hypoglycemic effect of YL was assessed by fasting blood glucose, an oral glucose tolerance test, insulin levels, and other indexes. The underlying mechanism of YL was examined by targeting glucose metabolomics, western blotting, and qRT-PCR. Subsequently, the binding capacity between predicted AMP-activated protein kinase (AMPK) and important components of YL (Cop, Ber, and Epi) were validated by molecular docking and surface plasmon resonance. Then, in AMPK knockdown MIN6 cells, the mechanisms of Cop, Ber, and Epi were inversely confirmed through evaluations encompassing glucose-stimulated insulin secretion, markers indicative of ß-cell identity, and the examination of glycolytic genes and products. RESULTS: YL (0.9 g/kg) treatment exerted notable hypoglycemic effects and protected the structural integrity and identity of pancreatic ß-cells. Metabolomic analysis revealed that YL inhibited the hyperactivated glycolysis pathway in diabetic mice, thereby regulating the products of the tricarboxylic acid cycle. KEGG enrichment revealed the intimate relationship of this process with the AMPK signaling pathway. Cop, Ber, and Epi in YL displayed high binding affinities for AMPK protein. These compounds played a pivotal role in preserving the identity of pancreatic ß-cells and amplifying insulin secretion. The mechanism underlying this process involved inhibition of glucose uptake, lowering intracellular lactate levels, and elevating acetyl coenzyme A and ATP levels through AMPK signaling. The use of a glycolytic inhibitor corroborated that attenuation of glycolysis restored ß-cell identity and function. CONCLUSION: YL demonstrates significant hypoglycemic efficacy. We elucidated the potential mechanisms underlying the protective effects of YL and its active constituents on ß-cell function and identity by observing glucose metabolism processes in pancreatic tissue and cells. In this intricate process, AMPK plays a pivotal regulatory role.


Subject(s)
AMP-Activated Protein Kinases , Coptis , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Insulin-Secreting Cells , Signal Transduction , Animals , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , AMP-Activated Protein Kinases/metabolism , Hypoglycemic Agents/pharmacology , Signal Transduction/drug effects , Mice , Diabetes Mellitus, Experimental/drug therapy , Male , Coptis/chemistry , Blood Glucose/drug effects , Insulin/metabolism , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Molecular Docking Simulation , Glucose Tolerance Test , Plant Extracts/pharmacology
11.
Phytomedicine ; 128: 155557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547622

ABSTRACT

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Subject(s)
AMP-Activated Protein Kinases , Anthraquinones , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Human Umbilical Vein Endothelial Cells , Nitric Oxide Synthase Type III , Signal Transduction , Thrombospondin 1 , Animals , Humans , Anthraquinones/pharmacology , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Thrombospondin 1/metabolism , Nitric Oxide Synthase Type III/metabolism , Male , Rats , Mice , Rats, Sprague-Dawley , Endothelium, Vascular/drug effects , Glucose/metabolism , Mice, Inbred C57BL
12.
Phytomedicine ; 128: 155512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460357

ABSTRACT

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy-Related Protein-1 Homolog , Autophagy , Naphthoquinones , Signal Transduction , Synoviocytes , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Arthritis, Rheumatoid/drug therapy , Naphthoquinones/pharmacology , Signal Transduction/drug effects , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , AMP-Activated Protein Kinases/metabolism , Rats , Arthritis, Experimental/drug therapy , Synoviocytes/drug effects , Synoviocytes/metabolism , Male , Cell Proliferation/drug effects , Humans , Rats, Sprague-Dawley
13.
Biomed Pharmacother ; 173: 116373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442672

ABSTRACT

Alzheimer's disease (AD), characterized by cognitive dysfunction and other behavioral abnormalities, is a progressive neurodegenerative disease that occurs due to aging. Currently, effective drugs to mitigate or treat AD remain unavailable. AD is associated with several abnormalities in neuronal energy metabolism, such as decreased glucose uptake, mitochondrial dysfunction, and defects in cholesterol metabolism. Amp-activated protein kinase (AMPK) is an important serine/threonine protein kinase that regulates the energy status of cells. AMPK is widely present in eukaryotic cells and can sense and regulate energy metabolism to maintain energy supply and demand balance, making it a promising target for energy metabolism-based AD therapy. Therefore, this review aimed to discuss the molecular mechanism of AMPK in the pathogenesis of AD to provide a theoretical basis for the development of new anti-AD drugs. To review the mechanisms of phytochemicals in the treatment of AD via AMPK pathway regulation, we searched PubMed, Google Scholar, Web of Science, and Embase databases using specific keywords related to AD and phytochemicals in September 2023. Phytochemicals can activate AMPK or regulate the AMPK pathway to exert therapeutic effects in AD. The anti-AD mechanisms of these phytochemicals include inhibiting Aß aggregation, preventing Tau hyperphosphorylation, inhibiting inflammatory response and glial activation, promoting autophagy, and suppressing anti-oxidative stress. Additionally, several AMPK-related pathways are involved in the anti-AD mechanism, including the AMPK/CaMKKß/mTOR, AMPK/SIRT1/PGC-1α, AMPK/NF-κB/NLRP3, AMPK/mTOR, and PERK/eIF2α pathways. Notably, urolithin A, artemisinin, justicidin A, berberine, stigmasterol, arctigenin, and rutaecarpine are promising AMPK agonists with anti-AD effects. Several phytochemicals are effective AMPK agonists and may have potential applications in AD treatment. Overall, phytochemical-based drugs may overcome the barriers to the effective treatment of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , AMP-Activated Protein Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
14.
J. physiol. biochem ; 80(1): 205-218, Feb. 2024. ilus, graf
Article in English | IBECS | ID: ibc-EMG-578

ABSTRACT

O-GlcNAcylation, a nutritionally driven, post-translational modification of proteins, is gaining importance because of its health implications. Changes in O-GlcNAcylation are observed in various disease conditions. Changes in O-GlcNAcylation by diet that causes hypercholesterolemia are not critically looked into in the liver. To address it, both in vitro and in vivo approaches were employed. Hypercholesterolemia was induced individually by feeding cholesterol (H)/high-fat (HF) diet. Global O-GlcNAcylation levels and modulation of AMPK activation in both preventive and curative approaches were looked into. Diet-induced hypercholesterolemia resulted in decreased O-GlcNAcylation of liver proteins which was associated with decreased O-linked N-acetylglucosaminyltransferase (OGT) and Glutamine fructose-6-phosphate amidotransferase-1 (GFAT1). Activation of AMPK by metformin in preventive mode restored the O-GlcNAcylation levels; however, metformin treatment of HepG2 cells in curative mode restored O-GlcNAcylation levels in HF but failed to in H condition (at 24 h). Further, maternal faulty diet resulted in decreased O-GlcNAcylation in pup liver despite feeding normal diet till adulthood. A faulty diet modulates global O-GlcNAcylation of liver proteins which is accompanied by decreased AMPK activation which could exacerbate metabolic syndromes through fat accumulation in the liver. (AU)


Subject(s)
Hypercholesterolemia , Metabolic Diseases , Biosynthetic Pathways , Hexosamines
15.
Phytomedicine ; 126: 155437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394735

ABSTRACT

BACKGROUND: In diabetic liver injury, nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Rutin is a bioflavonoid produced by the hydrolysis of glucosidases to quercetin. Its biological activities include lowering blood glucose, regulating insulin secretion, regulating dyslipidemia, and exerting anti-inflammatory effects have been demonstrated. However, its effect on diabetic NAFLD is rarely reported. PURPOSE: Our study aimed to investigate the protective effects of Rutin on diabetic NAFLD and potential pharmacological mechanism. METHODS: We used db/db mice as the animal model to investigate diabetic NAFLD. Oleic acid-treated (OA) HeLa cells were examined whether Rutin had the ability to ameliorate lipid accumulation. HepG2 cells treated with 30 mM/l d-glucose and palmitic acid (PA) were used as diabetic NAFLD in vitro models. Total cholesterol (TC) and Triglycerides (TG) levels were determined. Oil red O staining and BODIPY 493/503 were used to detect lipid deposition within cells. The indicators of inflammation and oxidative stress were detected. The mechanism of Rutin in diabetic liver injury with NAFLD was analyzed using RNA-sequence and 16S rRNA, and the expression of fat-synthesizing proteins in the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway was investigated. Compound C inhibitors were used to further verify the relationship between AMPK and Rutin in diabetic NAFLD. RESULTS: Rutin ameliorated lipid accumulation in OA-treated HeLa. In in vitro and in vivo models of diabetic NAFLD, Rutin alleviated lipid accumulation, inflammation, and oxidative stress. 16S analysis showed that Rutin could reduce gut microbiota dysregulation, such as the ratio of Firmicutes to Bacteroidetes. RNA-seq showed that the significantly differentially genes were mainly related to liver lipid metabolism. And the ameliorating effect of Rutin on diabetic NAFLD was through AMPK/SREBP1 pathway and the related lipid synthesis proteins was involved in this process. CONCLUSION: Rutin ameliorated diabetic NAFLD by activating the AMPK pathway and Rutin might be a potential new drug ingredient for diabetic NAFLD.


Subject(s)
Diabetes Mellitus , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , AMP-Activated Protein Kinases/metabolism , Rutin/pharmacology , HeLa Cells , RNA, Ribosomal, 16S , Liver , Inflammation/metabolism , Diet, High-Fat/adverse effects , Lipids , Mice, Inbred C57BL
16.
Antioxidants (Basel) ; 13(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38397744

ABSTRACT

Fibrosis, which causes structural hardening and functional degeneration in various organs, is characterized by the excessive production and accumulation of connective tissue containing collagen, alpha-smooth muscle actin (α-SMA), etc. In traditional medicine, extracts of medicinal plants or herbal prescriptions have been used to treat various fibrotic diseases. The purpose of this narrative review is to discuss the antifibrotic effects of rosmarinic acid (RA) and plant extracts that contain RA, as observed in various experimental models. RA, as well as the extracts of Glechoma hederacea, Melissa officinalis, Elsholtzia ciliata, Lycopus lucidus, Ocimum basilicum, Prunella vulgaris, Salvia rosmarinus (Rosmarinus officinalis), Salvia miltiorrhiza, and Perilla frutescens, have been shown to attenuate fibrosis of the liver, kidneys, heart, lungs, and abdomen in experimental animal models. Their antifibrotic effects were associated with the attenuation of oxidative stress, inflammation, cell activation, epithelial-mesenchymal transition, and fibrogenic gene expression. RA treatment activated peroxisomal proliferator-activated receptor gamma (PPARγ), 5' AMP-activated protein kinase (AMPK), and nuclear factor erythroid 2-related factor 2 (NRF2) while suppressing the transforming growth factor beta (TGF-ß) and Wnt signaling pathways. Interestingly, most plants that are reported to contain RA and exhibit antifibrotic activity belong to the family Lamiaceae. This suggests that RA is an active ingredient for the antifibrotic effect of Lamiaceae plants and that these plants are a useful source of RA. In conclusion, accumulating scientific evidence supports the effectiveness of RA and Lamiaceae plant extracts in alleviating fibrosis and maintaining the structural architecture and normal functions of various organs under pathological conditions.

17.
Chin Med ; 19(1): 32, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38413976

ABSTRACT

OBJECT: Bufei Yishen formula (BYF), a traditional Chinese medicine alleviates COPD symptoms and suppresses airway epithelial inflammation. In this study, we determined whether BYF protects the airway epithelial barrier from destruction in COPD rats. METHODS: The protective effects of BYF on the airway epithelial barrier were examined in a rat COPD model. BEAS-2B epithelial cells were exposed to cigarette smoke extract (CSE) to determine the effect of BYF on epithelial barrier function. Transcriptomic and network analyses were conducted to identify the protective mechanisms. RESULTS: Oral BYF reduced the severity of COPD in rats by suppressing the decline in lung function, pathological changes, inflammation, and protected airway epithelial barrier function by upregulating apical junction proteins, including occludin (OCLN), zonula occludens (ZO)-1, and E-cadherin (E-cad). BYF treatment reduced epithelial permeability, and increased TEER as well as the apical junction proteins, OCLN, ZO-1, and E-cad in BEAS-2B cells exposed to CSE. Furthermore, 58 compounds identified in BYF were used to predict 421 potential targets. In addition, the expression of 572 differentially expressed genes (DEGs) was identified in CSE-exposed BEAS-2B cells. A network analysis of the 421 targets and 572 DEGs revealed that BYF regulates multiple pathways, of which the Sirt1, AMPK, Foxo3, and autophagy pathways may be the most important with respect to protective mechanisms. Moreover, in vitro experiments confirmed that nobiletin, one of the active compounds in BYF, increased apical junction protein levels, including OCLN, ZO-1, and E-cad. It also increased LC3B and phosphorylated AMPK levels and decreased the phosphorylation of FoxO3a. CONCLUSIONS: BYF protects the airway epithelial barrier in COPD by enhancing autophagy through regulation of the SIRT1/AMPK/FOXO3 signaling pathway.

18.
Drug Des Devel Ther ; 18: 549-566, 2024.
Article in English | MEDLINE | ID: mdl-38419811

ABSTRACT

Introduction: Tacrine, an FDA-approved acetylcholinesterase inhibitor, has shown efficacy in treating Alzheimer's disease, but its clinical use is limited by hepatotoxicity. This study investigates the protective effects of red ginseng against tacrine-induced hepatotoxicity, focusing on oxidative stress. Methods: A network depicting the interaction between compounds and targets was constructed for RG. Effect of RG was determined by MTT and FACS analysis with cells stained by rhodamine 123. Proteins were extracted and subjected to immunoblotting for apoptosis-related proteins. Results: The outcomes of the network analysis revealed a significant association, with 20 out of 82 identified primary RG targets aligning with those involved in oxidative liver damage including notable interactions within the AMPK pathway. in vitro experiments showed that RG, particularly at 1000µg/mL, mitigated tacrine-induced apoptosis and mitochondrial damage, while activating the LKB1-mediated AMPK pathway and Hippo-Yap signaling. In mice, RG also protected the liver injury induced by tacrine, as similar protective effects to silymarin, a well-known drug for liver toxicity protection. Discussion: Our study reveals the potential of RG in mitigating tacrine-induced hepatotoxicity, suggesting the administration of natural products like RG to reduce toxicity in Alzheimer's disease treatment.


Subject(s)
Alzheimer Disease , Chemical and Drug Induced Liver Injury , Panax , Mice , Animals , Tacrine/pharmacology , Tacrine/therapeutic use , Alzheimer Disease/drug therapy , Acetylcholinesterase/metabolism , Network Pharmacology , AMP-Activated Protein Kinases , Cholinesterase Inhibitors/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control
19.
Environ Toxicol ; 39(5): 3188-3197, 2024 May.
Article in English | MEDLINE | ID: mdl-38356236

ABSTRACT

Yin chai hu (Radix Stellariae) is a root medicine that is frequently used in Chinese traditional medicine to treat fever and malnutrition. In modern medicine, it has been discovered to have anti-inflammatory, anti-allergic, and anticancer properties. In a previous study, we were able to extract lipids from Stellariae Radix using supercritical CO2 extraction (SRE), and these sterol lipids accounted for up to 88.29% of the extract. However, the impact of SRE on the development of atopic dermatitis (AD) has not yet been investigated. This study investigates the inhibitory effects of SRE on AD development using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. Treatment with SRE significantly reduced the dermatitis score and histopathological changes compared with the DNCB group. The study found that treatment with SRE resulted in a decrease of pro-inflammatory cytokines TNF-α, CXC-10, IL-12, and IL-1ß in skin lesions. Additionally, immunohistochemical analysis revealed that SRE effectively suppressed M1 macrophage infiltration into the AD lesion. Furthermore, the anti-inflammatory effect of SRE was evaluated in LPS + INF-γ induced bone marrow-derived macrophages (BMDMs) M1 polarization, SRE inhibited the production of TNF-α, CXC-10, IL-12, and IL-1ß and decreased the expression of NLRP3. Additionally, SRE was found to increase p-AMPKT172, but had no effect on total AMPK expression, after administration of the AMPK inhibitor Compound C, the inhibitory effect of SRE on M1 macrophages was partially reversed. The results indicate that SRE has an inhibitory effect on AD, making it a potential therapeutic agent for this atopic disorder.


Subject(s)
Dermatitis, Atopic , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Dinitrochlorobenzene/toxicity , Dinitrochlorobenzene/therapeutic use , AMP-Activated Protein Kinases , Carbon Dioxide/toxicity , Carbon Dioxide/therapeutic use , Tumor Necrosis Factor-alpha , Cytokines/metabolism , Macrophages/metabolism , Anti-Inflammatory Agents/therapeutic use , Interleukin-12/toxicity , Interleukin-12/therapeutic use , Lipids , Mice, Inbred BALB C , Skin
20.
Fitoterapia ; 174: 105877, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417680

ABSTRACT

Phytochemical study on the roots of a medicinal plant Ferula communis L. (Apiaceae) resulted in the isolation of 20 sesquiterpenes including 12 previously undescribed compounds, dauferulins A-L (1-12). The detailed spectroscopic analysis revealed 1-12 to be daucane-type sesquiterpenes with a p-methoxybenzoyloxy group at C-6. The absolute configurations of 1-12 were deduced by analysis of the ECD spectra. Dauferulins A-L (1-12), known sesquiterpenes (13-20), and analogues (14a-14l) derived from 6-O-p-methoxybenzoyl-10α-angeloyloxy-jeaschkeanadiol (14) were evaluated for their effects on AMPK phosphorylation in human hepatoma HepG2 cells as well as inhibitory activities against erastin-induced ferroptosis on human hepatoma Hep3B cells and IL-1ß production from LPS-treated murine microglial cells.


Subject(s)
Carcinoma, Hepatocellular , Ferula , Liver Neoplasms , Sesquiterpenes , Humans , Animals , Mice , Ferula/chemistry , Carcinoma, Hepatocellular/drug therapy , Molecular Structure , Sesquiterpenes/chemistry , Plant Roots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL