Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37513859

ABSTRACT

Dammarane-type saponins (DTSs) exist in various medicinal plants, which are a class of active ingredients with effects on improving myocardial ischemia and immunomodulation. In this study, a quantitative 1H NMR method of total DTSs in herbal medicines was developed based on the analytical procedure lifecycle. In the first stage (analytical procedure design), the Ishikawa diagram and failure mode effects and criticality analysis were used to conduct risk identification and risk ranking. Plackett-Burman design and central composite design were used to screen and optimize critical analytical procedure parameter. Then, the method operable design region was obtained through modeling. In the second stage (analytical procedure performance qualification), the performance of methodological indexes was investigated based on analytical quality by design. As examples of continued procedure performance verification, the method was successfully applied to determine the total DTSs in herbal pharmaceutical preparations and botanical extracts. As a general analytical method to quantify total DTSs in medicinal plants or pharmaceutical preparations, the developed method provides a new quality control strategy for various products containing dammarane-type saponin.

2.
Plants (Basel) ; 11(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36365413

ABSTRACT

Scientific regulatory systems with suitable analytical methods for monitoring quality, safety, and efficacy are essential in medicinal plant drug discovery. There have been only few attempts to adopt the analytical quality by design (AQbD) strategy in medicinal plants analysis over the last few years. AQbD is a holistic method and development approach that understands analytical procedure, from risk assessment to lifecycle management. The enhanced AQbD approach reduces the time and effort necessary to develop reliable analytical methods, leads to flexible change control through the method operable design region (MODR), and lowers the out-of-specification (OOS) results. However, it is difficult to follow all the AQbD workflow steps in the field of medicinal plants analysis, such as defining the analytical target profiles (ATPs), identifying critical analytical procedure parameters (CAPPs), among others, because the complexity of chemical and biological properties in medicinal plants acts as a barrier. In this review, various applications of AQbD to medicinal plant analytical procedures are discussed. Unlike the analysis of a single compound, medicinal plant analysis is characterized by analyzing multiple components contained in biological materials, so it will be summarized by focusing on the following points: Analytical methods showing correlations within analysis parameters for the specific medicinal plant analysis, plant raw material diversity, one or more analysis targets defined for multiple phytochemicals, key analysis attributes, and analysis control strategies. In addition, the opportunities available through the use of design-based quality management techniques and the challenges that coexist are also discussed.

3.
Phytochem Anal ; 33(7): 999-1017, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35733081

ABSTRACT

INTRODUCTION: Medical uses of Cannabis sativa L. have gained interest in recent decades, which highlights the need for defining appropriate quality specifications for Cannabis-based products. However, the complexity of plant matrices and structural similarity between cannabinoids make analytical development a challenging task. Thus, the application of analytical quality by design (AQbD)-driven approaches can favour the development of fit-for-purpose methods. OBJECTIVES: To develop a high-performance liquid chromatography diode array detector (HPLC-DAD) method for simultaneous quantification of cannabidiol, Δ9 -tetrahydrocannabinol, cannabidiolic acid, tetrahydrocannabinolic acid, and cannabinol in C. sativa by applying an AQbD-driven approach. MATERIALS AND METHODS: Critical method attributes (CMA) were established following the analytical target profile. Critical method variables (CMV) were categorised based on risk assessment and literature review. Selected CMV regarding sample preparation and chromatographic conditions were optimised using response surface methodology (RSM). The working point was estimated by multiple response optimisation using Deringer's desirability function. The validity of the optimal conditions was confirmed experimentally. Method validation was performed according to ANVISA and ICH guidelines. Relative response factors (RRFs) were also determined. RESULTS AND DISCUSSION: Baseline resolution of 12 major cannabinoids was achieved in a 35 min chromatographic analysis. All experimental responses obtained during confirmatory analyses were within the prediction intervals (PI95% ). Method's selectivity, linearity (10-100 µg/mL), precision, bias, extraction recovery, and ruggedness were satisfactorily demonstrated. CONCLUSIONS: The application of an AQbD-driven approach allowed for a better understanding of the effects of the ensemble of CMV on the analyte's behaviour, enabling the definition of appropriate conditions to ensure consistent achievement of the intended method's performance.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Cytomegalovirus Infections , Cannabidiol/analysis , Cannabinoids/analysis , Cannabinol/analysis , Cannabis/chemistry , Chromatography, High Pressure Liquid/methods , Dronabinol/analysis , Dronabinol/chemistry , Plant Extracts/chemistry
4.
AAPS PharmSciTech ; 22(3): 128, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33835304

ABSTRACT

The adoption of Quality by Design (QbD) and Analytical Method Lifecycle Management (AMLM) concepts to ensure the quality of pharmaceutical products has been applied and proposed over the last few years. These concepts are based on knowledge gained from the application of scientific and quality risk management approaches, throughout method lifecycle to assure continuous improvement and high reliability of analytical results. The overall AMLM starts with the definition of the method's intended use through the Analytical Target Profile definition, including three stages: (1) Method Design, taking advantage of the well-known concept of QbD; (2) Method Performance Qualification; (3) Continued Method Performance Verification. This is intended to holistically align method variability with product requirements, increasing confidence in the data generated, a regulatory requirement that the pharmaceutical industry must follow. This approach views all method-related activities, such as development, validation, transfer, and routine use as a continuum and interrelated process, where knowledge and risk management are the key enablers. An increase in method robustness, cost reduction, and decreased risk failures are some of the intrinsic benefits from this lifecycle management. This approach is clearly acknowledged both by regulators and industry. The roadmap of the regulatory and industry events that mark the evolution of these concepts helps to capture the current and future expectation of the pharmaceutical framework.


Subject(s)
Drug Industry/standards , Pharmaceutical Preparations/analysis , Chemistry, Pharmaceutical , Drug Design , Drug Industry/trends , Humans , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL