Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Nutr Sci ; 8: e15, 2019.
Article in English | MEDLINE | ID: mdl-31037218

ABSTRACT

Coffee consumption is inversely associated with the risk of non-alcoholic fatty liver disease (NAFLD). A gap in the literature still exists concerning the intestinal mechanisms that are involved in the protective effect of coffee consumption towards NAFLD. In this study, twenty-four C57BL/6J mice were divided into three groups each receiving a standard diet, a high-fat diet (HFD) or an HFD plus decaffeinated coffee (HFD+COFFEE) for 12 weeks. Coffee supplementation reduced HFD-induced liver macrovesicular steatosis (P < 0·01) and serum cholesterol (P < 0·001), alanine aminotransferase and glucose (P < 0·05). Accordingly, liver PPAR- α (P < 0·05) and acyl-CoA oxidase-1 (P < 0·05) as well as duodenal ATP-binding cassette (ABC) subfamily A1 (ABCA1) and subfamily G1 (ABCG1) (P < 0·05) mRNA expressions increased with coffee consumption. Compared with HFD animals, HFD+COFFEE mice had more undigested lipids in the caecal content and higher free fatty acid receptor-1 mRNA expression in the duodenum and colon. Furthermore, they showed an up-regulation of duodenal and colonic zonulin-1 (P < 0·05), duodenal claudin (P < 0·05) and duodenal peptide YY (P < 0·05) mRNA as well as a higher abundance of Alcaligenaceae in the faeces (P < 0·05). HFD+COFFEE mice had an energy intake comparable with HFD-fed mice but starting from the eighth intervention week they gained significantly less weight over time. Data altogether showed that coffee supplementation prevented HFD-induced NAFLD in mice by reducing hepatic fat deposition and metabolic derangement through modification of pathways underpinning liver fat oxidation, intestinal cholesterol efflux, energy metabolism and gut permeability. The hepatic and metabolic benefits induced by coffee were accompanied by changes in the gut microbiota.


Subject(s)
Coffee/metabolism , Diet, High-Fat/adverse effects , Intestines/drug effects , Liver/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Acyl-CoA Oxidase/metabolism , Alanine Transaminase/blood , Alcaligenaceae , Animals , Blood Glucose , Cholesterol/blood , Claudins/metabolism , Dietary Supplements , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Haptoglobins/metabolism , Liver/pathology , Male , Metabolic Syndrome , Mice , Mice, Inbred C57BL , PPAR alpha/metabolism , Polyphenols/pharmacology , Protein Precursors/metabolism , RNA, Messenger/metabolism
2.
Br J Nutr ; 116(8): 1315-1325, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27691998

ABSTRACT

ß-Hydroxy-ß-methylbutyrate (HMB) is a popular ergogenic aid used by human athletes and as a supplement to sport horses, because of its ability to aid muscle recovery, improve performance and body composition. Recent findings suggest that HMB may stimulate satellite cells and affect expressions of genes regulating skeletal muscle cell growth. Despite the scientific data showing benefits of HMB supplementation in horses, no previous study has explained the mechanism of action of HMB in this species. The aim of this study was to reveal the molecular background of HMB action on equine skeletal muscle by investigating the transcriptomic profile changes induced by HMB in equine satellite cells in vitro. Upon isolation from the semitendinosus muscle, equine satellite cells were cultured until the 2nd day of differentiation. Differentiating cells were incubated with HMB for 24 h. Total cellular RNA was isolated, amplified, labelled and hybridised to microarray slides. Microarray data validation was performed with real-time quantitative PCR. HMB induced differential expressions of 361 genes. Functional analysis revealed that the main biological processes influenced by HMB in equine satellite cells were related to muscle organ development, protein metabolism, energy homoeostasis and lipid metabolism. In conclusion, this study demonstrated for the first time that HMB has the potential to influence equine satellite cells by controlling global gene expression. Genes and biological processes targeted by HMB in equine satellite cells may support HMB utility in improving growth and regeneration of equine skeletal muscle; however, the overall role of HMB in horses remains equivocal and requires further proteomic, biochemical and pharmacokinetic studies.


Subject(s)
Dietary Supplements , Gene Expression Regulation, Developmental , Muscle Proteins/metabolism , Performance-Enhancing Substances/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Transcriptome , Valerates/metabolism , Animals , Apoptosis , Cell Differentiation , Cell Proliferation , Cells, Cultured , Energy Metabolism , Gene Expression Profiling , Gene Ontology , Hamstring Muscles/cytology , Hamstring Muscles/growth & development , Hamstring Muscles/metabolism , Horses , Male , Muscle Development , Muscle Proteins/genetics , RNA, Messenger/metabolism , Satellite Cells, Skeletal Muscle/cytology
SELECTION OF CITATIONS
SEARCH DETAIL