Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
Add more filters

Complementary Medicines
Publication year range
1.
World J Microbiol Biotechnol ; 40(6): 164, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630373

ABSTRACT

The aim of this study was to investigate the mechanisms by which yeasts (Saccharomyces cerevisiae) control the toxic effects of aflatoxins, which are not yet fully understood. Radiolabeled aflatoxin B1 (AFB13H) was administered by gavage to Wistar rats fed with aflatoxin (AflDiet) and aflatoxin supplemented with active dehydrated yeast Y904 (AflDiet + Yeast). The distribution of AFB13H and its metabolites were analyzed at 24, 48 and 72 h by tracking back of the radioactivity. No significant differences were observed between the AflDiet and AflDiet + Yeast groups in terms of the distribution of labeled aflatoxin. At 72 h, for the AflDiet group the radiolabeled aflatoxin was distributed as following: feces (79.5%), carcass (10.5%), urine (1.7%), and intestine (7.4%); in the AflDiet + Yeast the following distribution was observed: feces (76%), carcass (15%), urine (2.9%), and intestine (4.9%). These values were below 1% in other organs. These findings indicate that even after 72 h considerable amounts of aflatoxins remains in the intestines, which may play a significant role in the distribution and metabolism of aflatoxins and its metabolites over time. The presence of yeast may not significantly affect this process. Furthermore, histopathological examination of hepatic tissues showed that the presence of active yeast reduced the severity of liver damage caused by aflatoxins, indicating that yeasts control aflatoxin damage through biochemical mechanisms. These findings contribute to a better understanding of the mechanisms underlying the protective effects of yeasts against aflatoxin toxicity.


Subject(s)
Aflatoxins , Saccharomyces cerevisiae , Rats , Animals , Rats, Wistar , Aflatoxins/toxicity , Dietary Supplements , Feces
2.
Nat Prod Res ; : 1-9, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625875

ABSTRACT

The present study aimed to identify the presence of certain classes of phytochemicals in the leaf extract of medicinal herbs viz. Moringa oleifera and Calotropis procera, using qualitative detection tests and explored the potential of aqueous and ethanolic extract to inhibit aflatoxin production by thin layer chromatography at 25 °C and pH (7) of different incubation times i.e. 0-, 1-, 3-, 6- and 24-h. Qualitative phytochemical analysis reported that the aqueous leave extracts of M. oleifera and C. procera contained tannins, phlobatannins, quinones, steroids, sugar, betacyanins, fatty acids, phenols, and volatile oils. Aflatoxin analysis reported that the ethanolic extract of M. oleifera was found more effective than detoxifying 100% of AFB1 after 24 h of incubation. In the case of C. procera, the aqueous extract reduced 96.5% of AFB1 and ethanolic extract reduced 96% of AFB1 after 24-h of incubation. The results revealed that natural plant products have a high potential to reduce AFB1 and could contribute to mitigation plans for AFB1. There is a need for further characterisation using techniques such as GC-MS, LC-MS, or NMR which would provide valuable information on the chemical composition of the extracts.

3.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38572889

ABSTRACT

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Subject(s)
Annona , Curcumin , Rats , Animals , Aflatoxin B1/toxicity , Curcumin/pharmacology , Alanine Transaminase/pharmacology , Alkaline Phosphatase/pharmacology , Creatinine/pharmacology , Liver , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Aspartate Aminotransferases/pharmacology , Lactate Dehydrogenases
4.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474096

ABSTRACT

Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.


Subject(s)
Aflatoxins , Biological Products , Dietary Supplements , Kidney Diseases , Aflatoxins/toxicity , Aflatoxins/adverse effects , Humans , Animals , Biological Products/therapeutic use , Biological Products/pharmacology , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Oxidative Stress/drug effects
5.
Toxins (Basel) ; 16(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535788

ABSTRACT

A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.


Subject(s)
Gastrointestinal Microbiome , Zeolites , Animals , Female , Aflatoxin B1 , Butyric Acid , Diet , Humic Substances , Immunity, Cellular , Turkeys
6.
Heliyon ; 10(2): e24435, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312698

ABSTRACT

Aflatoxin B1 (AFB1) is a secondary metabolite produced principally by Aspergillus parasiticus and A. flavus. It is one of the most potent and commonly occurring dietary carcinogen with its carcinogenic potential being linked to the formation of DNA adducts and reactive oxygen species (ROS). Plant extracts contain a plethora of biologically active phytochemicals that act against ROS. This study aimed to assess the phytochemical content and antioxidant activity of methanolic extracts of some medicinal plants and investigate their detoxification potentials against AFB1. Phytochemical screening together with total phenolic content (TPC), total flavonoid content (TFC), and antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+)) assays) were performed on nine methanolic plant extracts. Extracts were incubated with AFB1 for 24 and 48 h and liquid chromatography mass spectrometry (LC-MS) analysis done to assess their AFB1 detoxification activities. The TPC of the extracts ranged from 88.92 ± 6.54 to 210.19 ± 7.90 mg GAE/g, while TFC ranged between 4.01 ± 0.94 and 32.48 ± 1.02 mg QE/g. Radical scavenging activities of extracts varied from 4.18 ± 1.37 to 251.53 ± 9.30 µg/mL and 8.36 ± 1.65 to 279.22 ± 8.33 µg/mL based on DPPH and ABTS+ assays, respectively. Six of the plant extracts showed a time-dependent detoxification activity against AFB1 after 48 h ranging from 20.17 to 38.13 %. C. dentata bark extract showed the highest percentage of AFB1 reduction, with mean percentages of 43.57 and 70.96 % at 24 and 48 h, respectively. This was followed by C. asiatica leaves and A. melegueta seeds with a maximum of 40.81 and 38.13 %, respectively after 48 h. These extracts also possessed high TPC, TFC, and antioxidant activities compared to all the other extracts. Findings from this study demonstrate the abundance of bioactive compounds with antioxidant activity playing a role in potent AFB1 detoxification activity.

7.
Anal Chim Acta ; 1295: 342328, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38355226

ABSTRACT

Enzyme cascade with high specificity and catalytic efficiency has significant applications for developing efficient bioanalysis methods. In this work, a sensitive and selective aptasensor was constructed based on the DNA-induced assembly of biocatalytic nanocompartments. Different from the conventional co-immobilization in one pot, the cascade enzymes of glucose oxidase (GOX) and horseradish peroxidase (HRP) were separately encapsulated in ZIF-90 nanoparticles. After conjugating complementary DNA or aptermer on enzyme@ZIF-90, DNA hybridization drove enzyme@ZIF-90 connected into clusters or linked on other DNA modified biocatalytic nanocompartment (such as invertase loaded Fe3O4@SiO2). Owing to the shortened distance between enzymes, the catalytic efficiency of connected clusters was significantly enhanced. However, the specifically interaction between the substrate molecule and aptermer sequence would lead to the disassembly of DNA duplexes, resulting in the gradual "switching-off" of cascade reactions. With aflatoxin B1 (AFB1) as the model substrate, the compartmentalized three-enzyme nanoreactors showed good analytical performance in the linear range from 0.01 ng mL-1 to 50 ng mL-1 with a low detection limit (3.3 pg mL-1). In addition, the proposed aptasensor was applied to detect AFB1 in corn oil and wheat powder samples with total recoveries ranging from 94 % to 109 %. As a result, this DNA-induced strategy for enzyme cascade nanoreactors opens new avenues for stimuli-responsive applications in biosensing.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Nanoparticles , Aflatoxin B1/analysis , Silicon Dioxide/chemistry , DNA/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Limit of Detection , Aptamers, Nucleotide/chemistry
8.
Toxins (Basel) ; 16(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38393156

ABSTRACT

Aflatoxin B1 (AFB1), a ubiquitous mycotoxin in corn-based animal feed, particularly in tropical regions, impairs liver function, induces oxidative stress and disrupts cellular pathways, potentially worsening bone health in modern broilers. A 19-day experiment was conducted to investigate the effects of feeding increasing levels of AFB1-contaminated feed (<2, 75-80, 150, 230-260 and 520-560 ppb) on bone mineralization markers in broilers (n = 360). While growth performance remained unaffected up to Day 19, significant reductions in tibial bone ash content were observed at levels exceeding 260 ppb. Micro-computed tomography results showed that AFB1 levels at 560 ppb significantly decreased trabecular bone mineral content and density, with a tendency for reduced connectivity density in femur metaphysis. Moreover, AFB1 above 230 ppb reduced the bone volume and tissue volume of the cortical bone of femur. Even at levels above 75 ppb, AFB1 exposure significantly downregulated the jejunal mRNA expressions of the vitamin D receptor and calcium and phosphorus transporters. It can be concluded that AFB1 at levels higher than 230 ppb negatively affects bone health by impairing bone mineralization via disruption of the vitamin D receptor and calcium and phosphorus homeostasis, potentially contributing to bone health issues in broilers.


Subject(s)
Aflatoxin B1 , Chickens , Animals , Aflatoxin B1/metabolism , Receptors, Calcitriol/metabolism , Calcification, Physiologic , Calcium/metabolism , X-Ray Microtomography , Animal Feed/analysis , Phosphorus/metabolism , Diet/veterinary , Liver
9.
Toxins (Basel) ; 16(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38393185

ABSTRACT

Water kefir grains (WKGs), the starter used to develop a traditional beverage named water kefir, consist of a symbiotic mixture of probiotics with diverse bioactivities, but little is known about their abilities to remove mycotoxins that have serious adverse effects on humans and animals. This study investigated the ability of WKGs to remove aflatoxin B1 (AFB1), one of the most toxic mycotoxins, under different settings, and determined the mechanism of absorption mediated by WKGs and the effect of WKGs on the toxicity induced by AFB1 and the reduction in AFB1 in cow milk and tea soups. The results showed the WKGs used herein were dominated by Lactobacillus, Acetobacter, Phenylobacterium, Sediminibacterium, Saccharomyces, Issatchenkia, and Kodamaea. HPLC analysis demonstrated that the WKGs effectively removed AFB1 at concentrations ranging from 1 to 5 µg/mL, pH values ranging from 3 to 9, and temperatures ranging from 4 to 45 °C. Additionally, the removal of AFB1 mainly depended on absorption, which was consistent with the Freundlich and pseudo-second-order kinetic models. Moreover, only 49.63% of AFB1 was released from the AFB1-WKG complex after four washes when the release of AFB1 was non-detectable. Furthermore, WKG treatment caused a dramatic reduction in the mutagenicity induced by AFB1 according to an Ames test and reduced more than 54% of AFB1 in cow milk and three tea soups. These results suggested that WKGs can act as a potential bio-absorbent with a high binding ability to detoxify AFB1 in food and feed via a chemical action step and multi-binding sites of AFB1 absorption in a wide range of scenarios.


Subject(s)
Kefir , Probiotics , Animals , Female , Cattle , Humans , Aflatoxin B1/metabolism , Lactobacillus/metabolism , Tea/chemistry
10.
J Agric Food Chem ; 72(2): 1276-1291, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38179648

ABSTRACT

Microorganisms rely on diverse ion transport and trace elements to sustain growth, development, and secondary metabolism. Manganese (Mn2+) is essential for various biological processes and plays a crucial role in the metabolism of human cells, plants, and yeast. In Aspergillus flavus, we confirmed that Pmr1 localized in cis- and medial-Golgi compartments was critical in facilitating Mn2+ transport, fungal growth, development, secondary metabolism, and glycosylation. In comparison to the wild type, the Δpmr1 mutant displayed heightened sensitivity to environmental stress, accompanied by inhibited synthesis of aflatoxin B1, kojic acid, and a substantial reduction in pathogenicity toward peanuts and maize. Interestingly, the addition of exogenous Mn2+ effectively rectified the developmental and secondary metabolic defects in the Δpmr1 mutant. However, Mn2+ supplement failed to restore the growth and development of the Δpmr1Δgdt1 double mutant, which indicated that the Gdt1 compensated for the functional deficiency of pmr1. In addition, our results showed that pmr1 knockout leads to an upregulation of O-glycosyl-N-acetylglucose (O-GlcNAc) and O-GlcNAc transferase (OGT), while Mn2+ supplementation can restore the glycosylation in A. flavus. Collectively, this study indicates that the pmr1 regulates Mn2+ via Golgi and maintains growth and metabolism functions of A. flavus through regulation of the glycosylation.


Subject(s)
Calcium-Transporting ATPases , Saccharomyces cerevisiae Proteins , Humans , Calcium-Transporting ATPases/metabolism , Aflatoxin B1/metabolism , Aspergillus flavus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Membrane Transport Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL