Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Harmful Algae ; 130: 102542, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38061823

ABSTRACT

Cyanobacterial blooms and the toxins they produce pose a growing threat worldwide. Mitigation of such events has primarily focused on phosphorus management and has largely neglected the role of nitrogen. Previous bloom research and proposed management strategies have primarily focused on temperate, dimictic lakes, and less on warm-monomictic systems like those at subtropical latitudes. The in-lake conditions, concentration of total microcystins, and microbial functioning of twenty warm-monomictic lakes in the southcentral United States were explored in the spring and summer of 2021. Our data revealed widespread microcystins in lakes across this region, some of which exceeded regulatory limits. Microcystins were higher in the spring compared to the summer, indicating that warm-monomictic lakes, even across a large range of precipitation, do not follow the trends of temperate dimictic lakes. Microcystins were found in surface waters and bottom waters well below the photic zone, reflecting the persistence of these toxins in the environment. Principal components analyses showed a strong association between microcystins, nitrate + nitrite, and Planktothrix relative abundance and transcriptional activity. Many systems exhibited stronger denitrification in the spring, perhaps contributing to the decreased toxin concentrations in the summer. Counter to most sampled lakes, one lake with the highest concentration of total microcystins indicated nitrogen cycle disruption, including inhibited denitrification. These findings are relevant to mitigating cyanobacterial blooms and toxin production in warm-monomictic systems, and suggests a need to consider nitrogen, and not solely phosphorus, in nutrient management discussions.


Subject(s)
Cyanobacteria , Microcystins , United States , Microcystins/analysis , Lakes/microbiology , Nitrates/analysis , Nitrites/analysis , Nitrogen Cycle , Nitrogen/analysis , Phosphorus/analysis
2.
J Environ Manage ; 348: 119209, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37837758

ABSTRACT

Improving hydrodynamic conditions is considered an effective method for facilitating the eutrophication management. However, the effect of hydrodynamic conditions on algal growth has rarely been quantified. In this work, a eutrophication model was developed and flow velocity was introduced into the algae growth kinetic formula to simulate the dynamics of algae growth in a drinking water source reservoir in East China. Based on the previous research and model calibration, the flow velocity-influence function f(v) and its parameters were determined. Accordingly, the optimal flow velocity for the dominant algae growth and critical flow velocity for algal growth inhibition were presented to be 0.055 m/s and 0.200 m/s for the study reservoir. Modeled results considering f(v) agreed with better with observations and reproduced the algal overgrowth process more accurately. The spatial-temporal differences in chlorophyll a (Chl a) concentration distribution during the algal proliferation period were analyzed on the basis of simulation results, which corroborated the significant influence of flow velocity on algal growth. The established model was applied to investigate the effect of improvement in hydrodynamic conditions on algal bloom control in the reservoir, and the scenario simulation of the additional sluice was conducted. Results showed that the additional sluice operation inhibited algal overgrowth effectively, resulting in an average decrease of 24.8%, 3.3%, 43.0%, and 37.5% in modeled Chl a concentration upstream north, upstream south, midstream and downstream, respectively. The established model might serve as a practical tool for eutrophication management in the study reservoir and other water bodies with similar hydrological characteristics and geographical features.


Subject(s)
Drinking Water , Eutrophication , Chlorophyll A/analysis , China , Environmental Monitoring/methods , Phosphorus/analysis
3.
Chemosphere ; 343: 140293, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758085

ABSTRACT

Eutrophication has spread from shallow lakes in temperature zones to lakes in cold regions as a result of a continuous warm climate and human activities. Little proof for the importance of dissolved organic phosphorus (DOP) in contributing to phosphorus cycling and algae growth has been generated for aquatic ecosystems, particularly in cold eutrophic lakes. In this study, a comprehensive in situ study was conducted in overlying water, suspended particulate matter, and sediment during and after algal bloom (in July and September, respectively) in Lake Hulun. Multiple methods of 31P NMR, enzymatic hydrolysis, and UV-visible technologies were combined to detect phosphorus occurrence, bioavailability, and molecular structure from a novel angle. The 31P NMR analysis results showed that DNA-P is mainly stored in the dissolved phase and has not been detected in suspended particulate matter or sediment. Enzymatic hydrolysis was used to determine the bioavailability of DOP, which revealed that in July and September, respectively, 85% and 79% of DOP were hydrolyzable. UV-visible analysis represented that the degree of humification and molecular weight of DOP were high during the algal bloom, but these values considerably dropped following the algal bloom. The large amount of DNA-P present in the overlying water is the main reason for the high degree of humification and high molecular weight of the water body. Besides, Lake Hulun's DNA-P remains highly bioavailable during algal blooms, despite its high degree of humification and molecular weight. These findings can serve as a theoretical basis for understanding the migration and transformation of DOP, as well as the persistence of algal blooms in eutrophic lakes located in cold regions.


Subject(s)
Lakes , Water Pollutants, Chemical , Humans , Lakes/chemistry , Environmental Monitoring/methods , Ecosystem , Water Pollutants, Chemical/analysis , Eutrophication , Phosphorus/chemistry , Dissolved Organic Matter , Water/analysis , Particulate Matter/analysis , China , Geologic Sediments/chemistry
4.
Sci Total Environ ; 896: 165252, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37400027

ABSTRACT

Seasonal sediment internal phosphorus (P) release is known to affect annual algal blooms in eutrophic lakes. In this study, a year-long field investigation and laboratory sediment core incubation were conducted to study the relationship between sediment internal P cycling and algal growth in Lake Taihu. The results indicated that the concentrations of water total phosphorus (TP) and chlorophyll-a (Chla) correlated with seasonal temperature and were assumed to be caused by internal P release. From cold winter to warm seasons, sediment internal P (porewater P concentration and P flux) exhibits dynamic changes. Sediment porewater soluble reactive phosphorus (SRP) and its flux in the summer were approximately five times and eight times those during winter, respectively. The release of sediment mobile P in the summer decreases its concentration and can supply SRP for algal blooms. Laboratory core incubation indicated that Chla and phycocyanin concentrations in the overlying water showed similar changes to sediment porewater P and P flux when cores were incubated from low to high temperature. The results of this study indicated that warmer conditions could increase the sediment porewater P concentration and sediment P flux into the bottom waters and consequently enhance sediment P availability to algae. This study provides new insights into the relationship between internal sediment P cycling and algal blooms in Lake Taihu.


Subject(s)
Lakes , Water , Seasons , Phosphorus/analysis , Eutrophication , China , Geologic Sediments , Environmental Monitoring
5.
Environ Res ; 231(Pt 3): 116251, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37245569

ABSTRACT

High phosphorus (P) concentrations are commonly observed in lakes during algal blooms despite massive efforts on external nutrient reduction. However, the knowledge about the relative contribution of internal P loading linked with algal blooms on lake phosphorus (P) dynamics remains limited. To quantify the effect of internal loading on P dynamics, we conducted extensive spatial and multi-frequency nutrient monitoring from 2016 to 2021 in Lake Taihu, a large shallow eutrophic lake in China, and its tributaries (2017-2021). The in-lake P stores (ILSP) and external loading were estimated and then internal P loading was quantified from the mass balance equation. The results showed that the in-lake total P stores (ILSTP) ranged from 398.5 to 1530.2 tons (t), and exhibited a dramatic intra- and inter-annual variability. The annual internal TP loading released from sediment ranged from 1054.3 to 1508.4 t, which was equivalent to 115.6% (TP loading) of the external inputs on average, and responsible for the fluctuations of ILSTP on a weekly scale. High-frequency observations exemplified that ILSTP increased by 136.4% during algal blooms in 2017, while by only 47.2% as a result of external loading after heavy precipitation in 2020. Our study demonstrated that both bloom-induced internal loading and storm-induced external loading are likely to run counter significantly to watershed nutrient reduction efforts in large shallow lakes. More importantly, bloom-induced internal loading is higher than storm-induced external loading over the short term. Given the positive feedback loop between internal P loadings and algal bloom in eutrophic lakes, which explains the significant fluctuation of P concentration while nitrogen concentration decreased. It is emphasized that internal loading and ecosystem restoration are unignorable in shallow lakes, particularly in the algal-dominated region.


Subject(s)
Ecosystem , Lakes , Phosphorus/analysis , Environmental Monitoring/methods , Nitrogen/analysis , Eutrophication , China
6.
J Environ Manage ; 330: 117177, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36603259

ABSTRACT

The eutrophication problem now threatens many lakes and reservoirs. To avoid the occurrence of algal blooms, some cities try to increase the flow rate or directly choose lakes or reservoirs with a short water residence time (WRT) as drinking water sources. However, up to now, whether such a strategy can achieve its goal is still unclear. In this study, a newly restored lake with a WRT of approximately 3 days was chosen to investigate algal growth potential as well as its responses to external nitrogen (N) and phosphorus (P) inputs. The results suggested that although the water quality of the lake could generally meet the environmental quality standards for surface water, dissolved inorganic nitrogen reached a high level with an average value of 1.58 mg/L. Meanwhile, a considerable increase in Chl-a concentration was observed across the flow direction. Especially, in July, Chl-a concentration at the site near the outlet was 8.1 times higher than that at the inlet, and cyanobacteria became the dominant species accounting for 83% of the total cell density. Nutrient enrichment experiments showed that algae could grow rapidly within 3 days with average specific growth rates (µ) of 0.36-0.42 d-1. The addition of N and P furtherly promoted the algal growth, and µ values of the treatments with P addition were the highest at 0.67-0.83 d-1. These results indicated that even if the WRT was reduced to 3 days, the risk of the occurrence of algal blooms still exists, and this undesirable trend would be enhanced by the short-term external nutrient input. Our findings indicated that the hydrodynamic control measures may not be entirely successful in protecting the drinking water source from algal blooms, especially when its influent has already been under eutrophication.


Subject(s)
Cyanobacteria , Drinking Water , Lakes , Eutrophication , Phosphorus/analysis , Nitrogen/analysis , Cell Proliferation , China , Environmental Monitoring
7.
Mar Environ Res ; 183: 105841, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36512865

ABSTRACT

Prorocentrum donghaiense blooms occur annually in the East China Sea coastal waters, degrading ecosystem functions and impeding economic development. Dissolved organic nitrogen and phosphorus (DON and DOP) are the main components in the marine nutrient pools and are closely related to harmful algal blooms. From April to June 2019, a survey was conducted along the East China Sea coast (Sansha and Lianjiang counties) to investigate the relationship between dissolved organic nutrients and P. donghaiense bloom. Our findings showed that dinoflagellates dominated the phytoplankton community, and dissolved organic nutrients were the major factors influencing community structure during the P. donghaiense bloom. Redundancy analysis indicated that P. donghaiense abundance was primarily affected by DON in the Sansha area while it was primarily affected by DON and DOP in the Lianjiang area. Correlation analysis also confirmed a strong positive correlation between dissolved organic nutrients and P. donghaiense abundance both in the Sansha and Lianjiang coastal areas (p < 0.001). Furthermore, a culture experiment was carried out during the bloom to further investigate the effect of dissolved organic nutrients on the phytoplankton community structure. After 10 days of culture, dinoflagellates' relative abundance decreased from 97.1% to 28.2% in the inorganic treatment, whereas dinoflagellates continued to dominate the phytoplankton community in the organic treatment (76.9%). As a result, we propose that dissolved organic nutrients are responsible for the P. donghaiense bloom outbreak and promote the phytoplankton community shift from diatoms to dinoflagellates.


Subject(s)
Dinoflagellida , Ecosystem , Harmful Algal Bloom , Phytoplankton , China , Phosphorus , Nutrients , Nitrogen
8.
Environ Sci Pollut Res Int ; 30(11): 31546-31560, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36447103

ABSTRACT

While pollutants are the most important factors for the deterioration of surface water quality, the identification of major pollutant sources for rivers is challenging, especially in areas with diverse land covers and multiple pollutant inputs. This study aims to identify the significant pollutant sources from the tributaries that are affecting the water quality and identify the limiting nutrient for algal growth in the Geum river to provide a management alternative for an improvement of the water quality. The positive matrix factorization (PMF) was applied for pollutant source identification and apportionment of the two major tributaries, Gab-cheon and Miho-cheon. Positive matrix factorization identifies three and two major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plants, urban, and agricultural pollution are identified as major pollutant sources. Furthermore, for Miho-cheon, agricultural and urban pollution were identified as major pollutant sources. Total phosphorus (TP) is also identified as a limiting nutrient for algal growth in the Geum river. Water quality control scenarios were formulated and improvement of water quality in the river locations was simulated and analyzed with the Environmental Fluid Dynamic Code (EFDC). Scenario results were evaluated using a water quality index. The reduction of total phosphorus (TP) from the tributaries has greatly improved the water quality, especially algal bloom in the downstream stations.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Quality , Environmental Monitoring/methods , Quality Improvement , Water Pollutants, Chemical/analysis , Phosphorus/analysis , China
9.
Harmful Algae ; 118: 102287, 2022 10.
Article in English | MEDLINE | ID: mdl-36195411

ABSTRACT

A bloom of the fish-killing haptophyte Chrysochromulina leadbeateri in northern Norway during May and June 2019 was the most harmful algal event ever recorded in the region, causing massive mortalities of farmed salmon. Accordingly, oceanographic and biodiversity aspects of the bloom were studied in unprecedented detail, based on metabarcoding and physico-chemical and biotic factors related with the dynamics and distribution of the bloom. Light- and electron-microscopical observations of nanoplankton samples from diverse locations confirmed that C. leadbeateri was dominant in the bloom and the primary cause of associated fish mortalities. Cell counts by light microscopy and flow cytometry were obtained throughout the regional bloom within and adjacent to five fjord systems. Metabarcoding sequences of the V4 region of the 18S rRNA gene from field material collected during the bloom and a cultured isolate from offshore of Tromsøy island confirmed the species identification. Sequences from three genetic markers (18S, 28S rRNA gene and ITS region) verified the close if not identical genetic similarity to C. leadbeateri from a previous massive fish-killing bloom in 1991 in northern Norway. The distribution and cell abundance of C. leadbeateri and related Chrysochromulina species in the recent incident were tracked by integrating observations from metabarcoding sequences of the V4 region of the 18S rRNA gene. Metabarcoding revealed at least 14 distinct Chrysochromulina variants, including putative cryptic species. C. leadbeateri was by far the most abundant of these species, but with high intraspecific genetic variability. Highest cell abundance of up to 2.7 × 107 cells L - 1 of C. leadbeateri was found in Balsfjorden; the high cell densities were associated with stratification near the pycnocline (at ca. 12 m depth) within the fjord. The cell abundance of C. leadbeateri showed positive correlations with temperature, negative correlation with salinity, and a slightly positive correlation with ambient phosphate and nitrate concentrations. The spatio-temporal succession of the C. leadbeateri bloom suggests independent initiation from existing pre-bloom populations in local zones, perhaps sustained and supplemented over time by northeastward advection of the bloom from the fjords.


Subject(s)
Haptophyta , Animals , Fishes , Genetic Markers , Haptophyta/genetics , Nitrates , Phosphates , RNA, Ribosomal, 18S/genetics
10.
Harmful Algae ; 118: 102297, 2022 10.
Article in English | MEDLINE | ID: mdl-36195422

ABSTRACT

The southern Chinese coast is one of the most developed regions in China and is an area where harmful algal blooms (HABs) have occurred frequently. In this study, differences in the phytoplankton community between microscopic observations and 18S rDNA metabarcoding were compared in 89 surface water samples collected from the southern Chinese coast and the western South China Sea (SCS). This is the first report investigating the phytoplankton community and HAB species using a combination of morphological and metabarcoding approaches in this sea area. There were substantial differences in phytoplankton community structure detected by the two methods. Microscopic observation revealed diatom predominance in the phytoplankton community, while metabarcoding indicated dinoflagellate dominance. The phytoplankton community structure obtained by microscopic observation better reflects the real situation in the water column. Metabarcoding annotated more species than morphospecies observed by microscopy. Haptophyta and Cryptophyta were the specific phyla detected in metabarcoding but were missed in microscopy due to their small size. Conversely, some taxa were found in microscopic analysis alone, such as species in Dinophysis, Prorocentrum, and Scrippsiella, suggesting some biases during metabarcoding and gaps in sequence databases. Metabarcoding is superior for detecting morphologically cryptic, small-sized and HAB taxa, such as unarmored dinoflagellates, nanosized hatophytes and chlorophytes, as well as multiple species in Alexandrium, Pseudonitzschia, and Chaetoceros in our study. A total of 62 HAB taxa were identified in this study, including blooming and potentially toxic species. Diatom abundances generally decreased southward, while those of dinoflagellates and haptophytes showed the opposite trend. Chlorophytes were mainly distributed in coastal waters, especially in the Pearl River Estuary. Phytoplankton community structures were shaped by nutrients and salinity, and phosphorus was the most limiting factor for phytoplankton growth. The phytoplankton community in the western SCS showed unique characteristics away from those in the coastal sea areas. The results suggest that the combination of morphological and metabarcoding approaches comprehensively reveals the phytoplankton community structure and diversity of HAB species.


Subject(s)
Diatoms , Dinoflagellida , DNA, Ribosomal , Dinoflagellida/genetics , Harmful Algal Bloom , Phosphorus , Phytoplankton , Water
11.
Toxins (Basel) ; 14(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36287953

ABSTRACT

The Lake in Central Park (LCP) and Prospect Park Lake (PPL) in New York City (NYC), USA, are lakes within two of the most visited parks in the USA. Five years of nearshore sampling of these systems revealed extremely elevated levels of cyanobacteria and the toxin, microcystin, with microcystin levels averaging 920 µg L−1 and chlorophyll a from cyanobacterial (cyano-chla) populations averaging 1.0 × 105 µg cyano-chla L−1. Both lakes displayed elevated levels of orthophosphate (DIP) relative to dissolved inorganic nitrogen (DIN) during summer months when DIN:DIP ratios were < 1. Nutrient addition and dilution experiments revealed that N consistently limited cyanobacterial populations but that green algae were rarely nutrient limited. Experimental additions of public drinking water that is rich in P and, to a lesser extent N, to lake water significantly enhanced cyanobacterial growth rates in experiments during which N additions also yielded growth enhancement. Collectively, this study demonstrates that the extreme microcystin levels during blooms in these highly trafficked lakes represent a potential human and animal health threat and that supplementation of these artificial lakes with public drinking water to maintain water levels during summer may promote the intensity and N limitation of blooms.


Subject(s)
Cyanobacteria , Drinking Water , Humans , Lakes/microbiology , Microcystins , Chlorophyll A , Nitrogen/analysis , Phosphates , Eutrophication
12.
Environ Pollut ; 315: 120414, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36244498

ABSTRACT

Despite the advances in safety technology and the improved implementation of precautionary measures, crude oil pollution has been occurring in the oceans globally. The water accommodated fraction (WAF) of crude oil and chemical dispersant are hypothesized to cause sub-lethal adverse effects on marine protists that are pivotal consumers of primary production. Exposure experiments were conducted to investigate the effects of crude oil and dispersant pollutants on the growth and grazing, separately, of protozoa species in cultures. In exposure to 0-30 µL L-1 of chemically enhanced WAF (CEWAF), the heterotrophic dinoflagellate Protoperidinium sp. and the ciliate Metacylis sp. showed slower positive population growth or negative population growth even at low concentrations. The dose-response model showed that Protoperidinium sp. and Metacylis sp. were highly susceptible to the CEWAF toxicity (median inhibition concentrations (IC50) at 1.1 and 5.9 µL L-1, respectively) while one algal species Ditylum brightwellii was relatively tolerant to the toxicity (IC50 at 168.7 µL L-1). With suppressed growth and impaired grazing of the protozoan species at high CEWAF concentrations, accumulation of their algal prey in culture containers was observed, as reflected by higher final:initial prey ratios at high CEWAF concentrations. Additionally, exposure experiments to the treatments of WAF, dispersant alone (Disp), and CEWAF of the same concentration revealed that the heterotrophic dinoflagellate Oxyrrhis marina had reduced bulk grazing impact towards its algal prey population in all three treatments when compared to the control treatment (i.e., grazing mortality of prey at 1.05 d-1). Similarly, Protoperidinium sp. and Metacylis sp. had reduced per capita prey ingestion rates in exposure to WAF and CEWAF when compared to the control treatments. This study provides experimental evidence for the potential link between impaired grazing activities and the formation of algal blooms in sub-lethal exposure to crude oil pollutants.


Subject(s)
Diatoms , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Petroleum/toxicity , Water , Water Pollutants, Chemical/toxicity
13.
Environ Pollut ; 313: 120078, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36075336

ABSTRACT

Predicting the occurrence of algal blooms is of great importance in managing water quality. Moreover, the demand for predictive models, which are essential tools for understanding the drivers of algal blooms, is increasing with global warming. However, modeling cyanobacteria dynamics is a challenging task. We developed a multivariate Chain-Bernoulli-based prediction model to effectively forecast the monthly sequences of algal blooms considering hydro-environmental predictors (water temperature, total phosphorus, total nitrogen, and water velocity) at a network of stations. The proposed model effectively predicts the risk of harmful algal blooms, according to performance measures based on categorical metrics of a contingency table. More specifically, the model performance assessed by the LOO cross-validation and the skill score for the POD and CSI during the calibration period was over 0.8; FAR and MR were less than 0.15. We also explore the relationship between hydro-environmental predictors and algal blooms (based on cyanobacteria cell count) to understand the dynamics of algal blooms and the relative contribution of each potential predictor. A support vector machine is applied to delineate a plane separating the presence and absence of algal bloom occurrences determined by stochastic simulations using different combinations of predictors. The multivariate Chain-Bernoulli-based prediction model proposed here offers effective, scenario-based, and strategic options and remedies (e.g., controlling the governing environmental predictors) to relieve or reduce increases in cyanobacteria concentration and enable the development of water quality management and planning in river systems.


Subject(s)
Cyanobacteria , Environmental Monitoring , Harmful Algal Bloom , Nitrogen , Phosphorus
14.
J Environ Manage ; 321: 115928, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35985262

ABSTRACT

Harmful algal blooms (HABs) remain a persistent issue that threatens both the physical and economic health of the Western Lake Erie basin (WLEB). Edge-of-field conservation practices are recommended to help manage agricultural runoff and reach phosphorus reduction targets in freshwater systems like the Great Lakes (in the USA). Constructed wetlands (CWs) are a specific edge-of-field practice that could prove critical to these efforts. While we know less about why wetlands are installed or implemented than many other private lands conservation practices, prior research does indicate that offsetting the costs of land taken out of production, or targeting land that is not suitable for production will be critical. Our research builds on these findings by assessing how the perceived productivity of the land moderates the relationship between other potential motivating factors and willingness to install wetlands. We also assess how these critical motivations may vary by the conservation-mindedness of the farmer. Our results indicate that the decision to install a constructed wetland is not entirely dependent on the productivity of the land. Associated beneficial functions (e.g., aesthetics, hunting opportunities) positively influence willingness, even on productive land for those farmers who value conservation. We suggest that program providers emphasize the diverse benefits of constructed wetlands, and target farmers who exhibit stronger conservation identities as they may be more likely to consider wetlands regardless of the productivity of their land.


Subject(s)
Lakes , Wetlands , Farmers , Harmful Algal Bloom , Humans , Phosphorus
15.
Environ Monit Assess ; 194(7): 493, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690674

ABSTRACT

Microcystin (MC) is a toxic secondary metabolite produced by select cyanobacteria that threatens aquatic and terrestrial organisms over a diverse range of freshwater systems. To assess the relationship between environmental parameters and MC, researchers frequently utilize correlational analyses. This statistical methodology has proved useful when summarizing complex water quality monitoring datasets, but the correlations between select parameters and MC have been documented to vary widely across studies and systems. Such variation within the peer-reviewed literature leaves uncertainty for resource managers when developing a MC monitoring program. The objective of this research is to determine if correlational analyses between environmental parameters and MC are helpful to resource managers desiring to understand the drivers of MC. Environmental (i.e., physical, chemical, and biological) and MC correlation data were retrieved from an estimated 2,643 waterbodies (largely from the north temperate region) and synthesized using a Fisher's z meta-analysis. Common water quality parameters, such as chlorophyll, temperature, and pH, were positively correlated with MC, while transparency was negatively correlated. Interestingly, 12 of the 15 studied nitrogen parameters, including total nitrogen, were not significantly correlated with MC. In contrast, three of the four studied phosphorus parameters, including total phosphorus, were positively related to MC. Results from this synthesis quantitatively reinforces the usefulness of commonly measured environmental parameters to monitor for conditions related to MC occurrence; however, correlational analyses by themselves are often ineffective and considering what role a parameter plays in the ecology of cyanobacterial blooms in addition to MC production is vital.


Subject(s)
Cyanobacteria , Microcystins , Cyanobacteria/metabolism , Ecosystem , Environmental Monitoring/methods , Fresh Water/analysis , Lakes/chemistry , Microcystins/analysis , Nitrogen/analysis , Phosphorus/analysis , Water Quality
16.
Sci Total Environ ; 839: 156183, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35623511

ABSTRACT

The microbial food-loop is critical to energy flow in aquatic food webs. We tested the hypothesis that species composition and relative abundance in a microbial community would be modified by the development of toxic algal blooms either by enhanced carbon production or toxicity. This study tracked the response of the microbial community with respect to composition and relative abundance during a 7-day algal bloom event in the Three Gorges Reservoir in May 2018. Chlorophyll a biomass, microscopic identification and cell counting of algae and algal abundance (ind. L-1) and carbon, nutrient concentrations (total phosphorus and nitrogen, dissolved total phosphorus and nitrogen), and DNA high throughput sequencing were measured daily. Algal density (1.2 × 109 ind. L-1) and Chlorophyll a (219 µg L-1) peaked on May 20th-21st, when the phytoplankton community was dominated by Chlorella spp. and Microcystis spp. The concentrations of both dissolved total nitrogen and phosphorus declined during the bloom period. Based on DNA high throughput sequencing data, the relative abundance of eukaryotic phytoplankton, microzooplankton (20-200 µm), mesozooplankton (>200 µm), and fungal communities varied day by day while the prokaryotic community revealed a more consistent structure. Enhanced carbon production during the bloom was closely associated with increased heterotrophic microbial composition in both the prokaryotic and eukaryotic communities. A storm event, however, that caused surface cooling and deep mixing of the water column greatly modified the composition and relative abundance of species in the microbial loop. The high temporal variability and dynamics observed in this study suggest that many factors, and not just algal blooms, were interacting to determine the composition and relative abundance of species of the microbial loop.


Subject(s)
Chlorella , Microbiota , Carbon , China , Chlorophyll A , Eutrophication , Nitrogen/analysis , Phosphorus/analysis , Phytoplankton
17.
Mar Pollut Bull ; 178: 113572, 2022 May.
Article in English | MEDLINE | ID: mdl-35381462

ABSTRACT

Since 1990s, harmful algal blooms (HABs) of Kareniaceae, primarily caused by species of Karenia and Karlodinium and rarely by Takayama species, have been substantially increasing in frequency and duration in the coastal waters of China. In this study, we recorded a bloom of high abundance of T. acrotrocha in the Haizhou Bay, the Yellow Sea in September 2020, which is the first record of a Takayama bloom in the temperate coastal waters of China. We found that high concentrations of DON and DOP accelerated the proliferation of T. acrotrocha in the Haizhou Bay. Intensive mariculture, and terrestrial nitrogen and phosphorus input may be responsible for the eutrophication in the Haizhou Bay featuring high concentrations of DON and DOP, and high DIN/DIP ratios. The results suggested that, under ocean warming, the HABs of Kareniaceae are becoming increasingly dominant in eutrophic temperate coasts with intensive mariculture activities.


Subject(s)
Dinoflagellida , Phosphorus , Bays , Dinoflagellida/physiology , Dissolved Organic Matter , Harmful Algal Bloom
18.
J Environ Manage ; 297: 113376, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34325374

ABSTRACT

Harmful algal bloom is prevalent in the reclaimed-water-source (RWS) river caused by the excessive nutrient's inputs. Rainfall water may be the sole nutrient-diluted water source for the RWS river. However, the effects of storm events on the algal bloom in the RWS river are poorly understood. This study presents chlorophyll-a (Chl-a) variations before, during, and after the initial storm events (Pre-storm, In-storm, and Post-storm) at four representative sites with distinct hydraulic conditions in a dam-regulated RWS river system, Beijing. The response of Chl-a to the initial storm events mostly depends on the ecosystem status that caused by the river hydraulic properties. The upstream is more river-like and downstream is more lake-like. In the river-like system, elevated water temperature (WT, increased by 2 %) could support the dominating algae (diatom) growth (Chl-a increased by 130 %) from Pre-storm to In-storm period. In the lake-like system, the dominant algae (blue algae) declined (Chl-a sharply decreased by 96%-99 %) due to the lower WT (decreased by 3%-7%) and increased flow velocities from Pre-storm to In-storm period. During the Post-storm period, the dominant algae break out (Chl-a surged by 20%-319 %) in the lake-like system caused by the recovered WT (increased by 3%-6%) and flow velocity. The occurrence of algal bloom can be predicted by the Random Forest (RF) model based on water quality parameters such as total nitrogen (TN). The thresholds of algal bloom for the Pre-storm, In-storm, and Post-storm periods were identified as 30 µg/L, 10 µg/L, and 10 µg/L, respectively. The two driven factors were WT and nitrate (NO3-N) for the Pre-storm period and were WT and TN for the In- & Post-storm periods. A higher risk of algal bloom is highlighted during the initial storm events in the RWS river. We propose recommendations for improving water quality in the RWS river systems under the climatic change.


Subject(s)
Ecosystem , Water , China , Chlorophyll , Chlorophyll A , Environmental Monitoring , Eutrophication , Nitrogen/analysis , Phosphorus/analysis
19.
Sci Total Environ ; 790: 148052, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34090163

ABSTRACT

Algal blooms caused by high concentrations of nutrients (especially phosphorus) limit the use of recycled water (RW) for replenishing landscape ponds in the context of global water scarcity. Previous studies have demonstrated that alum sludge is a low cost phosphorus sorption medium, which could potentially be applied in constructed wetlands and sewage treatment plants. However, whether alum sludge can be used for algae inhibition in reclaimed water urban landscape ponds (RWULPs) should be explored. In this study, phosphorus removal and algae inhibition by alum sludge were investigated in a RWULP in China. The results highlight that there is a serious risk of algal blooms in RWULPs. The algal density was found to be 1.58 × 105 cell·mL-1, which is 6.84 times higher than that of the surface water ponds. The algal blooms presented a Cyanophyta-Chlorophyta-Bacillariophyta-type, and the dominant algae species were Microcystis flos-aquae (Wittr.) Kirchner, Chlorella vulgaris, and Scenedesmus quadricauda. Moreover, the removal rate of phosphorus by alum sludge was as high as 98% and eventually leads to phosphorus stress, which has an important effect on algae growth and algae inhibition rate of 80%. In addition, the proportion of phosphorus and nitrogen in the adsorbed alum sludge increased by 3.12% and 0.32%, respectively, and Al3+ was reduced by only 2.18%. Alum sludge is a potential inhibitor of algae in RWULPs that does not negatively impact the environment. These results are of great importance in algal bloom control of RWULPs and may help alleviate the problem of urban water resource scarcity.


Subject(s)
Chlorella vulgaris , Sewage , Alum Compounds , Microcystis , Phosphorus/analysis , Ponds , Water , Water Quality
20.
Sci Total Environ ; 768: 144515, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33453542

ABSTRACT

Dinoflagellate blooming periods are paradoxically characterized by high biomass growth rate and low ambient dissolved CO2 and inorganic nutrients, however, the underlying mechanisms linking cell growth and nutrient acquisition are poorly understood. Here, we compared metaproteomes of non-bloom, mid-blooming and late-blooming cells of a marine dinoflagellate Prorocentrum donghaiense. Cell division, metabolism of carbon, nitrogen, phosphorus, lipid, porphyrin and chlorophyll were more active in blooming cells than in non-bloom cells. Up-regulation of carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase II, and C4-cycle proteins enhanced CO2 assimilation of P. donghaiense. Proteins participating in external organic nutrient acquisition and conversion, such as transporters for fatty acids, peptides and amino acids, external- and internal-phosphomonoester hydrolase, and diverse peptidases and amino acid transaminases, exhibited higher expression in blooming cells relative to non-bloom cells. Interestingly, dissolved organic nitrogen (DON) such as urea and aspartate significantly down-regulated expression and activity of carbon assimilation proteins except for RuBisCO form II, suggesting that DON provided sufficient carbon source which reduced the need to concentrate internal CO2. This study demonstrates that coupling of efficient CO2 assimilation with DON utilization are essential for bloom maintenance of P. donghaiense, and future efforts should be devoted to dissolved organic nutrients for prevention and management of dinoflagelllate blooms.


Subject(s)
Dinoflagellida , Carbon Dioxide , Harmful Algal Bloom , Nutrients , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL