Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Publication year range
1.
Pathogens ; 10(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34684284

ABSTRACT

Drug-based treatment of alveolar echinococcosis (AE) with benzimidazoles is in most cases non-curative, thus has to be taken lifelong. Here, we report on a 56-year-old male AE patient who received standard benzimidazole treatment and biliary plastic stents, and additionally self-medicated himself with the Peruvian plant extract Maca (Lepidium meyenii). After 42 months, viable parasite tissue had disappeared. Based on this striking observation, the anti-echinococcal activity of Maca was investigated in vitro and in mice experimentally infected with Echinococcus multilocularis metacestodes. Albendazole (ABZ)-treated mice and mice treated with an ABZ+Maca combination exhibited a significantly reduced parasite burden compared to untreated or Maca-treated mice. As shown by a newly established UHPLC-MS/MS-based measurement of ABZ-metabolites, the presence of Maca during the treatment did not alter ABZ plasma levels. In vitro assays corroborated these findings, as exposure to Maca had no notable effect on E. multilocularis metacestodes, and in cultures of germinal layer cells, possibly unspecific, cytotoxic effects of Maca were observed. However, in the combined treatments, Maca inhibited the activity of ABZ in vitro. While Maca had no direct anti-parasitic activity, it induced in vitro proliferation of murine spleen cells, suggesting that immunomodulatory properties could have contributed to the curative effect seen in the patient.

2.
Int J Parasitol Drugs Drug Resist ; 13: 121-129, 2020 08.
Article in English | MEDLINE | ID: mdl-32636148

ABSTRACT

The current chemotherapeutical treatment against alveolar echinococcosis relies exclusively on benzimidazoles, which are not parasiticidal and can induce severe toxicity. There are no alternative treatment options. To identify novel drugs with activity against Echinococcus multilocularis metacestodes, researchers have studied potentially interesting drug targets (e.g. the parasite's energy metabolism), and/or adopted drug repurposing approaches by undertaking whole organism screenings. We here focus on drug screening approaches, which utilize an in vitro screening cascade that includes assessment of the drug-induced physical damage of metacestodes, the impact on metacestode viability and the viability of isolated parasite stem cells, structure-activity relationship (SAR) analysis of compound derivatives, and the mode of action. Finally, once in vitro data are indicative for a therapeutic window, the efficacy of selected compounds is assessed in experimentally infected mice. Using this screening cascade, we found that the anti-malarial mefloquine was active against E. multilocularis metacestodes in vitro and in vivo. To shed more light into the mode of action of mefloquine, SAR analysis on mefloquine analogues was performed. E. multilocularis ferritin was identified as a mefloquine-binding protein, but its precise role as a drug target remains to be elucidated. In mice that were infected either intraperitoneally with metacestodes or orally with eggs, oral treatment with mefloquine led to a significant reduction of parasite growth compared to the standard treatment with albendazole. However, mefloquine was not acting parasiticidally. Assessment of mefloquine plasma concentrations in treated mice showed that levels were reached which are close to serum concentrations that are achieved in humans during long-term malaria prophylaxis. Mefloquine might be applied in human AE patients as a salvage treatment. Future studies should focus on other repurposed anti-infective compounds (MMV665807, niclosamide, atovaquone), which showed stronger in vitro activity against E. multilocularis than mefloquine.


Subject(s)
Anticestodal Agents/pharmacology , Antimalarials/pharmacology , Drug Repositioning , Echinococcus multilocularis , Mefloquine/pharmacology , Albendazole/pharmacology , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Echinococcosis/drug therapy , Echinococcus multilocularis/drug effects , Echinococcus multilocularis/growth & development , Echinococcus multilocularis/metabolism , Ferritins/drug effects , Ferritins/metabolism , Humans , Mefloquine/analogs & derivatives , Mice
3.
Parasitology ; 146(7): 956-967, 2019 06.
Article in English | MEDLINE | ID: mdl-30975235

ABSTRACT

The essential oil (EO) of Thymus capitatus, seven fractions (F1-F7) obtained from silica gel chromatography, and several pure EO components were evaluated with respect to in vitro activities against Echinococcus multilocularis metacestodes and germinal layer (GL) cells. Attempts to evaluate physical damage in metacestodes by phosphoglucose isomerase (PGI) assay failed because EO and F1-F7 interfered with the PGI-activity measurements. A metacestode viability assay based on Alamar Blue, as well as transmission electron microscopy, demonstrated that exposure to EO, F2 and F4 impaired metacestode viability. F2 and F4 exhibited higher toxicity against metacestodes than against mammalian cells, whereas EO was as toxic to mammalian cells as to the parasite. However, none of these fractions exhibited notable activity against isolated E. multilocularis GL cells. Analysis by gas chromatography-mass spectrometry showed that carvacrol was the major component of the EO (82.4%), as well as of the fractions F3 (94.4%), F4 (98.1%) and F5 (90.7%). Other major components of EO were ß-caryophyllene, limonene, thymol and eugenol. However, exposure of metacestodes to these components was ineffective. Thus, fractions F2 and F4 of T. capitatus EO contain potent anti-echinococcal compounds, but the activities of these two fractions are most likely based on synergistic effects between several major and minor constituents.


Subject(s)
Anthelmintics/pharmacology , Echinococcus multilocularis/cytology , Echinococcus multilocularis/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Thymus Plant/chemistry , Animals , Anthelmintics/chemistry , Biological Assay , Carcinoma, Hepatocellular , Cell Survival/drug effects , Cells, Cultured , Chromatography, Gel , Drug Discovery , Echinococcosis/drug therapy , Fibroblasts/drug effects , Foreskin/cytology , Foreskin/drug effects , Humans , Male , Oils, Volatile/chemistry , Plant Oils/chemistry , Rats
4.
J Med Case Rep ; 11(1): 113, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28416007

ABSTRACT

BACKGROUND: Alveolar echinococcosis is a potentially lethal zoonosis caused by larval forms of the tapeworm Echinococcus multilocularis. Humans are aberrant intermediate hosts who become infected by ingestion of egg-contaminated food or water or via physical contact with domestic or wild animals that carry the parasite in their small intestine. In humans, the disease usually affects the liver and can spread to other organs causing metastatic infiltration. In this report, we describe an advanced presentation of human alveolar echinococcosis mimicking metastatic malignancy. CASE PRESENTATION: A 62-year-old white woman was evaluated for fever, jaundice, and abdominal pain, associated with significant weight loss. She lived in a rural area in Switzerland and used to eat wild forest fruits and mushrooms. She owned cats that used to hunt rodents. On physical examination, she appeared severely ill with cachexia, altered mental status, jaundice, and massive hepatomegaly. Laboratory tests showed cholestasis with preserved liver function. An abdominal computed tomography scan showed an enlarged liver with a huge cystic mass in the right lobe extending into the left lobe, infiltrating her hepatic hilum, causing intrahepatic bile duct dilation and occlusion of her right portal vein. A chest computed tomography scan showed multiple calcified bilateral pulmonary nodules. Her clinical and radiological presentation resembled an advanced neoplastic disease. Serologic tests for Echinococcus multilocularis were positive. The diagnosis of alveolar echinococcosis was established on her past history of exposure, imaging, and serology results. CONCLUSIONS: Clinical presentation and radiologic imaging findings of disseminated alveolar echinococcosis can mimic metastatic malignancy, and diagnosis can be challenging in atypically advanced cases. As the incidence of human alveolar echinococcosis appears to be increasing in Europe and Switzerland, physicians should be aware of alveolar echinococcosis, its epidemiology, and its clinical features.


Subject(s)
Albendazole/therapeutic use , Anthelmintics/therapeutic use , Bile Ducts/parasitology , Echinococcosis/diagnosis , Echinococcosis/therapy , Feeding Behavior , Liver/parasitology , Animals , Bile Ducts/pathology , Cats , Diagnosis, Differential , Drainage , Echinococcosis/physiopathology , Endemic Diseases , Fatal Outcome , Female , Humans , Liver/pathology , Liver Neoplasms/pathology , Middle Aged , Multiple Organ Failure , Neoplasms, Second Primary/pathology , Shock, Septic , Switzerland
5.
Vet Parasitol ; 212(3-4): 193-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26190130

ABSTRACT

Human alveolar echinococcosis (AE) is caused by the fox tapeworm Echinococcus multilocularis and is usually lethal if left untreated. The current strategy for treating human AE is surgical resection of the parasite mass complemented by chemotherapy with benzimidazole compounds. However, reliable chemotherapeutic alternatives have not yet been developed stimulating the research of new treatment strategies such as the use of medicinal plants. The aim of the current study was to investigate the efficacy of the combination albendazole (ABZ)+thymol on mice infected with E. multilocularis metacestodes. For this purpose, mice infected with parasite material were treated daily for 20 days with ABZ (5 mg/kg), thymol (40 mg/kg) or ABZ (5 mg/kg)+thymol (40 mg/kg) or left untreated as controls. After mice were euthanized, cysts were removed from the peritoneal cavity and the treatment efficacy was evaluated by the mean cysts weight, viability of protoscoleces and ultrastructural changes of cysts and protoscoleces. The application of thymol or the combination of ABZ+thymol resulted in a significant reduction of the cysts weight compared to untreated mice. We also found that although ABZ and thymol had a scolicidal effect, the combination of the two compounds had a considerably stronger effect showing a reduction in the protoscoleces viability of 62%. These results were also corroborated by optical microscopy, SEM and TEM. Protoscoleces recovered from ABZ or thymol treated mice showed alterations as contraction of the soma region, rostellar disorganization and presence of blebs in the tegument. However both drugs when combined lead to a total loss of the typical morphology of protoscoleces. All cysts removed from control mice appeared intact and no change in ultrastructure was detected. In contrast, cysts developed in mice treated with ABZ revealed changes in the germinal layer as reduction in cell number, while the treatment with thymol or the ABZ+thymol combination predominantly showed presence of cell debris. On the other hand, no differences were found in alkaline phosphatase (AP), glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activities between control and treated mice, indicating the lack of toxicity of the different drug treatments during the experiment. Because combined ABZ+thymol treatment exhibited higher treatment efficiency compared with the drugs applied separately against murine experimental alveolar echinococcosis, we propose it would be a useful option for the treatment of human AE.


Subject(s)
Albendazole/therapeutic use , Echinococcosis/drug therapy , Echinococcus multilocularis , Thymol/therapeutic use , Albendazole/administration & dosage , Animals , Anthelmintics/administration & dosage , Anthelmintics/therapeutic use , Drug Therapy, Combination , Echinococcosis/pathology , Echinococcus multilocularis/ultrastructure , Female , Mice , Thymol/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL