Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Heliyon ; 9(11): e22089, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053871

ABSTRACT

Background: Qizhu Anti-Cancer Recipe (QACR) is a traditional Chinese medicine widely used in treating several liver diseases. However, its function and the relevant mechanism underlying its effect in treating hepatocellular carcinoma (HCC) remain unknown. The aim of this study was to explore the effect of QACR in HCC, which are expected to be a potential therapeutic scheme for HCC. Materials and methods: The chemical compositions of QACR were determined by liquid chromatography/quadrupole time-of-fight mass spectrometry (LC-QTOF-MS). The anoikis-resistant HCC cell proliferation and angiopoiesis were detected using the cell counting kit 8 (CCK8) assay, trypan blue, calcein AM/EthD-1, flow cytometer, Western blot, and tube formation assays. An orthotopic xenograft mouse model was established to evaluate the in vivo effects of the QACR. The expression of proliferating cell nuclear antigen (PCNA), Bcl-2, CD31, caspase-3, caspase-8, caspase-9, PARP-1, DFF40, phospho-c-Jun NH2-terminal kinase (p-JNK), and JNK was assessed using Western blot and immunohistochemical analysis. Results: QACR reduced the growth and tube formation of anoikis-resistant HCC cells and enhanced cell apoptosis in vitro. In the orthotopic xenograft mouse models, QACR suppressed the tumorigenesis of HCC in vivo. Mechanistically, QACR modulated the JNK pathway. The JNK inhibitor (SP600125) reverses the inhibitory effects of QACR on anoikis-resistant HCC cell proliferation and angiopoiesis. Conclusion: Our study suggests that QACR suppresses the proliferation and angiopoiesis of anoikis-resistant HCC cells by activating the JNK pathway. Therefore, QACR is a promising new therapeutic strategy for treating hepatocellular carcinoma.

2.
Front Pharmacol ; 14: 1325992, 2023.
Article in English | MEDLINE | ID: mdl-38283837

ABSTRACT

Introduction: Hepatocellular carcinoma (HCC) is responsible for approximately 90% of liver malignancies and is the third most common cause of cancer-related mortality worldwide. However, the role of anoikis, a programmed cell death mechanism crucial for maintaining tissue equilibrium, is not yet fully understood in the context of HCC. Methods: Our study aimed to investigate the expression of 10 anoikis-related genes (ARGs) in HCC, including BIRC5, SFN, UBE2C, SPP1, E2F1, etc., and their significance in the disease. Results: Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we discovered that these ARGs are involved in important processes such as tissue homeostasis, ion transport, cell cycle regulation, and viral infection pathways. Furthermore, we found a significant correlation between the prognostic value of five ARGs and immune cell infiltrates. Analysis of clinical datasets revealed a strong association between BIRC5 expression and HCC pathological progression, including pathological stage, T stage, overall survival (OS), and race. By constructing a competing endogenous RNA (ceRNA) network and using molecular docking, we identified ten bioactive compounds from traditional Chinese medicine (TCM) that could potentially modulate BIRC5. Subsequent in vitro experiments confirmed the influence of platycodin D, one of the identified compounds, on key elements within the ceRNA network. Discussion: In conclusion, our study presents a novel framework for an anoikis-centered prognostic model and an immune-involved ceRNA network in HCC, revealing potential regulatory targets. These insights contribute to our understanding of HCC pathology and may lead to improved therapeutic interventions.

3.
Life (Basel) ; 12(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35207590

ABSTRACT

Cancer metastasis is directly related to the survival rate of cancer patients. Although cancer metastasis proceeds by the movement of cancer cells, it is fundamentally caused by its resistance to anoikis, a mechanism of apoptosis caused by the loss of adhesion of cancer cells. Therefore, it was found that inhibiting cancer migration and reducing anoikis resistance are important for cancer suppression, and natural compounds can effectively control it. Among them, Ribes fasciculatum, which has been used as a medicinal plant, was confirmed to have anticancer potential, and experiments were conducted to prove various anticancer effects by extracting Ribes fasciculatum (RFE). Through various experiments, it was observed that RFE induces apoptosis of AGS gastric cancer cells, arrests the cell cycle, induces oxidative stress, and reduces mobility. It was also demonstrated that anoikis resistance was attenuated through the downregulation of proteins, such as epidermal growth factor receptor (EGFR). Moreover, the anticancer effect of RFE depends upon the increase in p53 expression, suggesting that RFE is suitable for the development of p53-targeted anticancer materials. Moreover, through xenotransplantation, it was found that the anticancer effect of RFE confirmed in vitro was continued in vivo.

4.
J Inorg Biochem ; 227: 111682, 2022 02.
Article in English | MEDLINE | ID: mdl-34902763

ABSTRACT

Cadmium (Cd) is a toxic heavy metal of considerable toxicity, possessing a serious environmental problem that threatening food safety and human health. However, the underlying mechanisms of Cd-induced nephrotoxicity and detoxification response remain largely unclear. Cd was administered at doses of 35, 70, and 140 mg/kg diet with feed for 90 days and produced potential damage to chickens' kidneys. The results showed that Cd exposure induced renal anatomical and histopathological injuries. Cd exposure up-regulated cytochrome P450 enzymes (CYP450s), activated nuclear xenobiotic receptors (NXRs) response, including aryl hydro-carbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) by low and moderate doses of Cd, and induced an increase in CYP isoforms expression. Cd exposure down-regulated phase II detoxification enzymes (glutathione-S-transferase (GST), glutathione peroxidase (GSH-PX) activities, and glutathione (GSH) content), and GST isoforms transcription . Furthermore, ATP-binding cassette (ABC) transporters, multidrug resistance protein (MRP1), and P-glycoprotein (P-GP) levels were elevated by low dose, but high dose inhibited the P-GP expression. Activation of detoxification enzymes lost their ability of resistance as increasing dose of Cd, afterwards brought into severe renal injury. Additionally, Cd suppressed focal adhesion kinase (Fak) and integrins protein expression as well as activated extrinsic pathway and intrinsic pathways, thereby producing anoikis. In conclusion, these results indicated that Cd induced Fak-mediated anoikis activation in the kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway.


Subject(s)
Anoikis/drug effects , Avian Proteins/metabolism , Cadmium/toxicity , Constitutive Androstane Receptor/metabolism , Focal Adhesion Kinase 2/metabolism , Kidney/metabolism , Pregnane X Receptor/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects , Animals , Chickens , Male
5.
J Ethnopharmacol ; 267: 113473, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33068649

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Metastasis is the main cause of death in lung cancer patients. Circulating tumor cells (CTCs) may be an important target of metastasis intervention. Previous studies have shown that Jinfukang could prevent the recurrence and metastasis of lung cancer, and we have established a circulating lung tumor cell line CTC-TJH-01. However, whether Jinfukang inhibition of lung cancer metastasis is related to CTCs is still unknown. AIM OF THE STUDY: To further explore the mechanism of Jinfukang in anti-metastasis of lung cancer from the perspective of intervention of CTCs. MATERIALS AND METHODS: CTC-TJH-01 and H1975 cells were treated with Jinfukang. Cell viability was detected by CCK8, and the cell apoptosis was detected by flow cytometry. Transwell was used to detected cell migration and invasion. Cell anoikis was detected by anoikis detection kit. Protein expression was analysis by Western blot. RESULTS: Jinfukang could inhibit the proliferation, migration and invasion of CTC-TJH-01 and H1975 cells. Besides, Jinfukang could also induce anoikis in CTC-TJH-01 and H1975 cells. Analysis of the mRNA expression profile showed ECM-receptor interaction and focal adhesion were regulated by Jinfukang. Moreover, it was also find that Jinfukang significantly inhibited integrin/Src pathway in CTC-TJH-01 and H1975 cells. When suppress the expression of integrin with ATN-161, it could promote Jinfukang to inhibit migration and induce anoikis in CTC-TJH-01 and H1975 cells. CONCLUSIONS: Our results indicate that the migration and invasion of CTCs are inhibited by Jinfukang, and the mechanism may involve the suppression of integrin/Src axis to induce anoikis. These data suggest that Jinfukang exerts anti-metastatic effects in lung cancer may through anoikis.


Subject(s)
Anoikis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Cell Movement/drug effects , Drugs, Chinese Herbal/pharmacology , Integrins/metabolism , Lung Neoplasms/drug therapy , Neoplastic Cells, Circulating/drug effects , src-Family Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Signal Transduction
6.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182770

ABSTRACT

Metastasis is the main cause of cancer-related deaths. Anoikis is a type of apoptosis caused by cell detachment, and cancer cells become anoikis resistant such that they survive during circulation and can successfully metastasize. Therefore, sensitization of cancer cells to anoikis could prevent metastasis. Here, by screening for anoikis sensitizer using natural compounds, we found that pygenic acid A (PA), a natural compound from Prunella vulgaris, not only induced apoptosis but also sensitized the metastatic triple-negative breast cancer cell lines, MDA-MB-231 cells (human) and 4T1 cells (mouse), to anoikis. Apoptosis protein array and immunoblotting analysis revealed that PA downregulated the pro-survival proteins, including cIAP1, cIAP2, and survivin, leading to cell death of both attached and suspended cells. Interestingly, PA decreased the levels of proteins associated with anoikis resistance, including p21, cyclin D1, p-STAT3, and HO-1. Ectopic expression of active STAT3 attenuated PA-induced anoikis sensitivity. Although PA activated ER stress and autophagy, as determined by increases in the levels of characteristic markers, such as IRE1α, p-elF2α, LC3B I, and LC3B II, PA treatment resulted in p62 accumulation, which could be due to PA-induced defects in autophagy flux. PA also decreased metastatic characteristics, such as cell invasion, migration, wound closure, and 3D growth. Finally, lung metastasis of luciferase-labeled 4T1 cells decreased following PA treatment in a syngeneic mouse model when compared with the control. These data suggest that PA sensitizes metastatic breast cancer cells to anoikis via multiple pathways, such as inhibition of pro-survival pathways and activation of ER stress and autophagy, leading to the inhibition of metastasis. These findings suggest that sensitization to anoikis by PA could be used as a new therapeutic strategy to control the metastasis of breast cancer.


Subject(s)
Anoikis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triterpenes/pharmacology , Animals , Autophagy/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress/drug effects , Female , Humans , Inhibitor of Apoptosis Proteins/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Medicine, East Asian Traditional , Mice , Mice, Inbred BALB C , Plants, Medicinal , Prunella , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
7.
J Cell Physiol ; 235(10): 6462-6495, 2020 10.
Article in English | MEDLINE | ID: mdl-32239727

ABSTRACT

Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.


Subject(s)
Antioxidants/pharmacology , Antioxidants/therapeutic use , Mesenchymal Stem Cells/drug effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , Animals , Cell- and Tissue-Based Therapy/methods , Dietary Supplements , Humans , Oxidative Stress/drug effects , Signal Transduction/drug effects
8.
BMC Complement Altern Med ; 18(1): 17, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29338725

ABSTRACT

BACKGROUND: Based on clinical medications and related studies, we established a Yang-Gan Jie-Du Sang-Jie (YGJDSJ) herbal formula for hepatocarcinoma treatment. In present study, we evaluated the anti-cancer potential of YGJDSJ on suspension-grown human hepatocellular carcinoma Bel-7402 cells. METHODS: Bel-7402 cells were cultured in poly(2-hydroxyethyl methacrylate) (poly-HEMA) coated plates and treated with YGJDSJ. Anchorage-independent cell growth was detected by cell Counting Kit-8 (CCK-8) assay and soft agar colony formation assay. Anoikis was detected by ethdium homodimer-1 (EthD-1) staining and flow cytometry analysis. Caspases activities were detected by the cleavage of chromogenic substrate. Reactive oxygen species (ROS) was detected by 2',7'-dichlorofluorescin diacetate (DCFH-DA) staining. Protein expression and phosphorylation was identified by western blot. Protein expression was knocked-down by siRNA. RESULTS: YGJDSJ inhibited the proliferation of Bel-7402 cells in poly-HEMA coated plates and anchorage-independent growth of Bel-7402 cells in soft agar. YGJDSJ also induced anoikis in Bel-7402 cells as indicated by EthD-1 staining and flow cytometry analysis. YGJDSJ activated caspase-3, - 8, and - 9 in suspension-grown Bel-7402 cells. The pan-caspase inhibitor Z-VAD-FMK significantly abrogated the effects of YGJDSJ on anoikis in suspension-grown Bel-7402 cells. In addition, YGJDSJ increased ROS in suspension-grown Bel-7402 cells. The ROS scavenger N-acetyl-L-cysteine (NAC) partially attenuated YGJDSJ-induced activation of caspase-3, - 8 and - 9 and anoikis in suspension-grown Bel-7402 cells. Furthermore, YGJDSJ inhibited expression and phosphorylation of protein tyrosine kinase 2 (PTK2) in suspension-grown Bel-7402 cells. Over-expression of PTK2 significantly abrogated YGJDSJ induced anoikis. CONCLUSIONS: YGJDSJ inhibits anchorage-independent growth and induce caspase-mediated anoikis in Bel-7402 cells, and may relate to ROS generation and PTK2 downregulation.


Subject(s)
Anoikis/drug effects , Carcinoma, Hepatocellular/metabolism , Drugs, Chinese Herbal/pharmacology , Liver Neoplasms/metabolism , Caspases/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Focal Adhesion Kinase 1/metabolism , Humans , Reactive Oxygen Species/metabolism
9.
J Nat Med ; 70(1): 18-27, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26384689

ABSTRACT

Metastasis in lung cancer has been recognized as an important cause of high mortality. Resistance to anoikis and the epithelial-to-mesenchymal transition (EMT) are critical factors for the successful spread of cancer cells. Compounds that suppress these features of cancer cells should be potentially active for anti-metastasis approaches. We have demonstrated for the first time that moscatilin, at its non-toxic concentrations to lung cancer cells and human normal keratinocytes, significantly decreases lung cancer cell survival in the detached condition, and suppresses the formation of tumors in an anchorage-independent growth assay. Furthermore, we found that moscatilin significantly decreased the activated level of survival proteins, namely ERK and Akt. In addition, moscatilin down-regulated cavelolin-1 (Cav-1), leading to a reduction in anti-apoptotic Mcl-1 protein. In terms of EMT, treatment of the cells with moscatilin significantly suppressed mesenchymal cell markers, namely vimentin, Slug, and Snail. These results indicate that moscatilin inhibited anoikis resistance in lung cancer cells via survival suppression, Cav-1 down-regulation, and inhibition of EMT. The compound could therefore be beneficial for the treatment and prevention of lung cancer metastasis.


Subject(s)
Anoikis/drug effects , Benzyl Compounds/pharmacology , Caveolin 1/biosynthesis , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Lung Neoplasms/pathology , Vimentin/biosynthesis , Cell Line, Tumor , Cell Movement , Cell Proliferation/drug effects , Down-Regulation , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Metastasis , Snail Family Transcription Factors , Transcription Factors/biosynthesis
10.
Anticancer Res ; 35(5): 2827-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25964563

ABSTRACT

BACKGROUND/AIM: The ability of cancer cells to resist to anoikis has been shown to augment cancer cell metastasis in many cancers. In search for potential substances for anti-metastatic approaches, this study aimed to investigate anoikis-sensitizing activity of lupalbigenin, extracted from Derris scandens. MATERIALS AND METHODS: Human lung cancer cells were treated with non-cytotoxic concentrations of lupalbigenin in a detachment condition. Anoikis was evaluated at various time points using MTT viability assays. The effect of lupalbigenin on anchorage-independent growth was performed by soft-agar assay. The survival signaling proteins, as well as regulatory proteins of apoptosis and metastasis, were examined by western blot analysis. RESULTS: Lupalbigenin treatment significantly down-regulated survival proteins, including protein kinase B (pAKT/AKT) and extracellular signal-regulated kinase (pERK/ERK), as well as anti-apoptotic protein B-cell lymphoma 2 (BCL-2), resulting in the enhancement of the cellular response to anoikis and the decrease of growth and survival in an anchorage-independent condition. CONCLUSION: Lupalbigenin sensitizes detachment-induced cell death in human lung cancer cell through down-regulation of pro-survival proteins.


Subject(s)
Anoikis/drug effects , Apoptosis Regulatory Proteins/biosynthesis , Isoflavones/administration & dosage , Lung Neoplasms/drug therapy , Plant Extracts/administration & dosage , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Derris/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mitogen-Activated Protein Kinases/biosynthesis , Neoplasm Metastasis , Plant Extracts/chemistry , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Signal Transduction/drug effects
11.
Toxicol Appl Pharmacol ; 280(1): 10-20, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25094029

ABSTRACT

Flavonoids exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Anoikis resistance occurs at multiple key stages of the metastatic cascade. Here, we demonstrate that isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, inhibits human breast cancer metastasis by preventing anoikis resistance, migration and invasion through downregulating cyclooxygenase (COX)-2 and cytochrome P450 (CYP) 4A signaling. ISL induced anoikis in MDA-MB-231 and BT-549 human breast cancer cells as evidenced by flow cytometry and the detection of caspase cleavage. Moreover, ISL inhibited the mRNA expression of phospholipase A2, COX-2 and CYP 4A and decreased the secretion of prostaglandin E2 (PGE2) and 20-hydroxyeicosatetraenoic acid (20-HETE) in detached MDA-MB-231 cells. In addition, it decreased the levels of phospho-PI3K (Tyr(458)), phospho-PDK (Ser(241)) and phospho-Akt (Thr(308)). Conversely, the exogenous addition of PGE2, WIT003 (a 20-HETE analog) and an EP4 agonist (CAY10580) or overexpression of constitutively active Akt reversed ISL-induced anoikis. ISL exerted the in vitro anti-migratory and anti-invasive activities, whereas the addition of PGE2, WIT003 and CAY10580 or overexpression of constitutively active Akt reversed the in vitro anti-migratory and anti-invasive activities of ISL in MDA-MB-231 cells. Notably, ISL inhibited the in vivo lung metastasis of MDA-MB-231 cells, together with decreased intratumoral levels of PGE2, 20-HETE and phospho-Akt (Thr(308)). In conclusion, ISL inhibits breast cancer metastasis by preventing anoikis resistance, migration and invasion via downregulating COX-2 and CYP 4A signaling. It suggests that ISL could be a promising multi-target agent for preventing breast cancer metastasis, and anoikis could represent a novel mechanism through which flavonoids may exert the anti-metastatic activities.


Subject(s)
Anoikis/physiology , Breast Neoplasms/enzymology , Cell Movement/physiology , Chalcones/pharmacology , Cyclooxygenase 2/metabolism , Cytochrome P-450 CYP4A/metabolism , Animals , Anoikis/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Chalcones/therapeutic use , Cytochrome P-450 CYP4A/antagonists & inhibitors , Down-Regulation/drug effects , Down-Regulation/physiology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Glycyrrhiza , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/prevention & control , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Random Allocation , Signal Transduction/drug effects , Signal Transduction/physiology , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL