Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
EBioMedicine ; 101: 105013, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364702

ABSTRACT

BACKGROUND: Influenza viruses continually acquire mutations in the antigenic epitopes of their major viral antigen, the surface glycoprotein haemagglutinin (HA), allowing evasion from immunity in humans induced upon prior influenza virus infections or vaccinations. Consequently, the influenza strains used for vaccine production must be updated frequently. METHODS: To better understand the antigenic evolution of influenza viruses, we introduced random mutations into the HA head region (where the immunodominant epitopes are located) of a pandemic H1N1 (H1N1pdm) virus from 2015 and incubated it with various human sera collected in 2015-2016. Mutants not neutralized by the human sera were sequenced and further characterized for their haemagglutination inhibition (HI) titers with human sera and with ferret sera raised to H1N1pdm viruses from 2009 to 2015. FINDINGS: The largest antigenic changes were conferred by mutations at HA amino acid position 187; interestingly, these antigenic changes were recognized by human, but not by ferret serum. H1N1pdm viruses with amino acid changes at position 187 were very rare until the end of 2018, but have become more frequent since; in fact, the D187A amino acid change is one of the defining changes of clade 6B.1A.5a.1 viruses, which emerged in 2019. INTERPRETATION: Our findings indicate that amino acid substitutions in H1N1pdm epitopes may be recognized by human sera, but not by homologous ferret sera. FUNDING: This project was supported by funding from the NIAID-funded Center for Research on Influenza Pathogenesis (CRIP, HHSN272201400008C).


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Animals , Ferrets , Influenza A Virus, H1N1 Subtype/genetics , Epitopes , Amino Acids , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry
2.
Sci China Life Sci ; 58(9): 882-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26219513

ABSTRACT

The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbidity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-like strains) and HK14 (A/Hong Kong/5738/2014-like strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in mainland China, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an important role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.


Subject(s)
Antigenic Variation , Antigens, Viral/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/virology , Amino Acid Sequence , Amino Acids/chemistry , Antigens, Viral/genetics , Binding Sites , China , Computer Simulation , Epidemics , Epitopes/chemistry , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines , Influenza, Human/epidemiology , Molecular Sequence Data , Phylogeny , Seasons , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL