Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474563

ABSTRACT

Aeginetia indica L., a parasitic root in the Orobanchaceae family, is used as a food colorant in traditional Thai desserts. However, scant information is available on its food applications as well as medicinal properties, while overharvesting by the local people has severely depleted wild plant populations. This research, thus, aimed to extract optimized total phenolic content (TPC) in varying extraction conditions using response surface methodology (RSM) and the Box-Behnken design (BBD). Results indicated that an extraction temperature of 90 °C, 80% (v/v) aqueous ethanol, and 0.5% (w/v) solid-to-liquid ratio yielded the highest TPC at 129.39 mg gallic acid equivalent (GAE)/g dry weight (DW). Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) identified the predominant phenolics as apigenin (109.06 mg/100 g extract) and luteolin (35.32 mg/100 g extract) with trace amounts of naringenin and rutin. Under the optimal extraction condition, the plant extract exhibited antioxidant activities of 5620.58 and 641.52 µmol Trolox equivalent (TE)/g DW determined by oxygen radical absorbance capacity (ORAC) and ferric ion reducing antioxidant power (FRAP) assay, while the scavenging capacity of total radicals at 50% (SC50) was determined to be 135.50 µg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The plant extract also exhibited inhibitory activities against the key enzymes relevant to type II diabetes, obesity, and Alzheimer's disease, suggesting the potential for medicinal applications.


Subject(s)
Antioxidants , Diabetes Mellitus, Type 2 , Humans , Antioxidants/chemistry , Tandem Mass Spectrometry , Plant Extracts/chemistry , Rutin
2.
Molecules ; 29(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398569

ABSTRACT

In this study, Asparagus stipularis was characterized concerning its phytochemical composition, antioxidant potential, cytotoxicity, and pancreatic lipase inhibitory activities. Twenty-seven compounds were identified and quantified by HPLC-DAD-MS in the leaf, stem, pericarp, and rhizome of ethanolic extracts. Seven steroidal saponins were detected, and the highest content was quantified in rhizome and pericap. A. stipularis also contained significant amounts of flavonoids in the aerial part. Isorhamnetin tetra-glycoside, quercetin-3-glucosyl-rutinoside, and rutin were the main flavonoid derivatives in leaf, stem, and pericarp extracts, respectively. In addition, eleven phenolic acids were also detected; among them, caffeic acid, protocatechuic acid, p-hydroxybenzoic acid, and ferulic acid were the predominant phenolics, with these having the highest amounts quantified in the rhizome extracts. All the tested extracts possessed antioxidant capacities, with pericarp and rhizome extracts exhibiting the highest activity in DPPH, ABTS, and FRAP assays. The extracts from pericarp and rhizome were revealed to also be the strongest inhibitors of pancreatic lipase. The rhizome extracts exhibited potent cytotoxic activity against HCT-116 and HepG2 with IC50 values of 30 and 54 µg/mL after 48 h of treatment. The present study demonstrated that A. stipularis can be used as a new source of natural antioxidants and potential anticancer and antiobesity compounds.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/chemistry , Rutin , Phytochemicals/pharmacology , Lipase
3.
Phytochem Anal ; 35(4): 889-902, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38369344

ABSTRACT

INTRODUCTION: The species Lantana camara is used in folk medicine. The biological activities of this medicinal plant are attributable to the presence of various derivatives of triterpenoids and phenolic compounds present in its preparations, indicating excellent economic potential. OBJECTIVE: In this study, the operational conditions of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were optimized using Box-Behnken design to improve the total phenolic content (TPC) recovered in hydroethanolic extracts of L. camara leaves. MATERIAL AND METHODS: The TPC, total flavonoid content (TFC), and antioxidant activities of the hydroalcoholic extracts of L. camara, prepared by UAE and MAE under the optimized extraction conditions, were compared with those of the extracts obtained by conventional extraction methods. RESULTS: Under the optimal conditions, the extracts obtained by UAE (35% ethanol, 25 min, and a solvent-to-solid ratio of 60:1 mL/g) and by MAE (53% ethanol, 15 min, and 300 W) provided high yields of 32.50% and 38.61% and TPC values of 102.89 and 109.83 mg GAE/g DW, respectively. The MAE extract showed the best results with respect to TPC, TFC, and antioxidant activities, followed by extracts obtained by UAE, Soxhlet extraction, decoction, maceration, and infusion, in that order. CONCLUSION: The results obtained indicate that L. camara may be used as an important source of antioxidant phenolic compounds to obtain products with high biological and economic potential, especially when the extraction process is performed under appropriate conditions using MAE and/or UAE, employing environmentally friendly solvents such as water and ethanol.


Subject(s)
Antioxidants , Lantana , Microwaves , Phenols , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/analysis , Lantana/chemistry , Phenols/analysis , Phenols/isolation & purification , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Mass Spectrometry/methods , Flavonoids/analysis , Flavonoids/isolation & purification , Ultrasonic Waves , Ultrasonics/methods
4.
Phytochem Anal ; 35(3): 586-598, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263361

ABSTRACT

INTRODUCTION: The seeds of Plantago asiatica L., a folk herb, are rich in polysaccharides that possess antioxidant, antidiabetic, and anti-inflammatory properties. Polysaccharides with lower molecular weights generally exhibit higher biological activity, so a method to efficiently extract low-molecular-weight polysaccharides from P. asiatica L. seeds (PLPs) is needed. OBJECTIVES: The aim was to establish an efficient method for extracting polysaccharides from P. asiatica L. seeds while preserving their activity. MATERIALS AND METHODS: Response surface methodology was applied to determine the optimal polysaccharide extraction conditions. Subsequently, the extracted polysaccharides were characterized to determine their monosaccharide composition, physicochemical properties, and molecular weight. Their antioxidant activity was evaluated by measuring their ability to scavenge DPPH and ABTS free radicals. RESULTS: An extraction yield of 9.17% was achieved under an ethanol concentration of 18.0% (w/w), a K2HPO4 concentration of 27.8% (w/w), a solvent-to-material ratio of 30:1 (mL/g), an ultrasound power of 203 W, and an extraction time of 39 min. Structural analyses indicated that this method might cause physicochemical changes in the conformation of PLPs and induce the degradation of PLP side chains but not the backbone. The antioxidant assay results showed that the DPPH and ABTS radical scavenging rates of PLPs were 48.3% and 49.2%, respectively, while in the control group the radical scavenging rates were 35.5% and 37.1%, respectively. CONCLUSION: The established method for extracting polysaccharides from P. asiatica L. seeds is efficient and reliable. The polysaccharides could be used as an important resource with antioxidant activity.


Subject(s)
Antioxidants , Benzothiazoles , Plantago , Sulfonic Acids , Antioxidants/chemistry , Ethanol , Plantago/chemistry , Plantago/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/metabolism , Seeds/chemistry
5.
Biol Trace Elem Res ; 202(2): 685-700, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37202582

ABSTRACT

Selenium contributes to physiological functions through its incorporation into selenoproteins. It is involved in oxidative stress defense. A selenium deficiency results in the onset or aggravation of pathologies. Following a deficiency, the repletion of selenium leads to a selenoprotein expression hierarchy misunderstood. Moreover, spirulina, a microalga, exhibits antioxidant properties and can be enriched in selenium.. Our objective was to determine the effects of a sodium selenite or selenium-enriched spirulina supplementation. Thirty-two female Wistar rats were fed for 12 weeks with a selenium-deficient diet. After 8 weeks, rats were divided into 4 groups and were fed with water, sodium selenite (20 µg Se/kg body weight), spirulina (3 g/kg bw), or selenium-enriched spirulina (20 µg Se/kg bw + 3 g spirulina/kg bw). Another group of 8 rats was fed with normal diet during 12 weeks. Selenium concentration and antioxidant enzyme activities were measured in plasma, urine, liver, brain, kidney, heart, and soleus. Expression of GPx (1, 3), Sel (P, S, T, W), SEPHS2, TrxR1, ApoER2, and megalin were quantified in liver, kidney, brain, and heart. We showed that a selenium deficiency leads to a growth delay, reversed by selenium supplementation despite a minor loss of weight in week 12 for SS rats. All tissues displayed a decrease in selenium concentration following deficiency. The brain seemed protected. We demonstrated a hierarchy in selenium distribution and selenoprotein expression. A supplementation of sodium selenite improved GPx activities and selenoprotein expression while a selenium-enriched spirulina was more effective to restore selenium concentration especially in the liver, kidney, and soleus.


Subject(s)
Malnutrition , Selenium , Spirulina , Rats , Female , Animals , Antioxidants/metabolism , Sodium Selenite/pharmacology , Spirulina/metabolism , Rats, Wistar , Selenoproteins/metabolism , Dietary Supplements , Glutathione Peroxidase/metabolism
6.
Chemosphere ; 350: 141071, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160958

ABSTRACT

Arsenic (As) is a heavy toxic metalloid found in air, water and soil that adversely affects the plant growth by inducing oxidative stress in plants. Its contamination of rice is a serious problem throughout the world. Selenium (Se) is a beneficial micronutrient for plants that acts as an antioxidant at low doses and protect the plants against number of environmental stresses either by modulating the primary metabolic pathways or regulating the production of phenolic compounds. In the present investigation, effect of Se on different phenolics, enzymes related to their metabolism and antioxidative potential were studied in As stressed rice leaves. Rice plants were grown in pots containing sodium arsenate (2-10 mg As(V) kg-1 soil) and sodium selenate (0.5-1 mg Se kg-1 soil), both alone and in combination and leaf samples were analyzed for various biochemical parameters. Phenolic constituents increased in rice leaves with As(V) treatment from 2 to 5 mg kg-1 soil and leaves exposed to As(V) @ 5 mg kg-1 soil exhibited 1.7, 1.9 and 2.5 fold increase in total phenolics, o-dihydroxyphenols and flavonols, respectively at grain filling stage. Binary application of Se + As improved various phenolic constituents, FRAP, reducing power and antioxidant activities as compared to control. PAL, TAL and PPO activities increased from 1.3 to 4.6 fold in combined As + Se treatment at both the stages. Anthocyanin contents showed a decline (10.8 fold) with increasing As doses and its content improved at both the stages with maximum increase of 3.76 fold with As5+Se1 combination. Binary application of As + Se improved gallic acid, chlorogenic acid, 3-hydroxy benzoic acid and kaempferol contents than control whereas catechin and coumaric acid showed the reverse trend. Application of Se can modulate phenolic constituents in leaf and grains of rice Cv PR126 due to As stress that helped plants to adapt to excess As and resulted in improved plant growth.


Subject(s)
Arsenic , Oryza , Selenium , Antioxidants/pharmacology , Antioxidants/metabolism , Selenium/pharmacology , Selenium/metabolism , Arsenic/metabolism , Oryza/metabolism , Soil
7.
Saudi Pharm J ; 31(12): 101829, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37961070

ABSTRACT

Plumula nelumbinis, a widely used traditional Chinese medicine known for its calming and nerve-soothing properties, contains essential oil as a primary component. However, research on P. nelumbinis essential oil (PNEO) is limited. This study aimed to investigate PNEO components, network target analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and antioxidant activity of P. nelumbinis from ten different habitats. GC-MS analysis identified 14 compounds in the essential oil, with CP12 (ß-Sitosterol) having the highest concentration. Five compounds were identified for the first time in P. nelumbinis, with three of them reported for the first time in the Nelumbo. Network target analysis revealed 185 potential targets for 11 compounds and GO and KEGG enrichment analyses showed that PNEO was mainly located in the plasma membrane and could regulate a variety of molecular functions. KEGG pathway enrichment analysis revealed that the essential oil was primarily enriched in pathways related to cancer and the nervous system. PNEO demonstrated strong antioxidant activity, with N8 (Fujiannanping) showing the highest ABTS scavenging capacity and N7 (Hunanxiangtan) showing the highest DPPH radical scavenging capacity. Cell experiments showed that CP4, CP5 and CP10 had protective effects against H2O2-induced oxidative damage. The study suggests that P. nelumbinis from different regions may have slightly different pharmacological effects due to the presence of unique compounds, and further research is necessary to explore the potential therapeutic benefits of PNEO.

8.
Molecules ; 28(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37959858

ABSTRACT

Plants with medicinal benefits are a crucial source of compounds for developing drugs. This study was designed to determine the chemical composition, antibacterial, antibiofilm, antioxidant, and anti-enzymatic activities of Pulicaria incisa (Lam.) DC. We also reported the molecular interaction between identified molecules and several receptors associated with antimicrobial and antibiofilm activities. A total of seventeen and thirteen compounds were identified in aqueous and methanolic extracts of P. incisa, respectively. The methanolic extract yielded a higher total content of polyphenols and flavonoids of about 84.80 ± 2.8 mg GAE/g and 28.30 ± 1.2 mg QE/g, respectively. Significant antibacterial activity was recorded for both extracts, with minimum inhibitory concentration (MIC) values ranging from 30 to 36 µg/mL, and the result was comparable to the reference antibiotic control. Antibiofilm assays revealed that both extracts were able to reduce the attachment of bacterial cells to 96-well plates, but the highest antibiofilm activity was recorded against Staphylococcus aureus. The methanolic extract also showed anti-enzymatic potency and high antioxidant activity, as demonstrated by all assays used, including DPPH, FRAP, and ABTS. These results were further validated by in silico approaches, particularly the molecular interaction of the identified compounds with the targeted receptors. These findings present P. incisa as a significant source of antibacterial, antibiofilm, antioxidant, and anti-enzymatic molecules.


Subject(s)
Antioxidants , Pulicaria , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Phytochemicals/pharmacology , Phytochemicals/chemistry , Methanol
9.
Ultrason Sonochem ; 100: 106632, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37826891

ABSTRACT

Ultrasonic assisted extraction is frequently referred to as a green environmental protection method. The flower of Citrus maxima (FCM) has been used as a health tea drink in China, although the tea drink lacks clear compound composition identification and functional research. In order to fully use Citrus fruit by-products and further explore the functional features of FCM, this paper isolated, identified, and assessed the chemical compounds in the petals, stems, styles, receptacles, stamens, and buds of FCM extract. There are 88 compounds were recovered, including 23 compounds in the bud, 21 compounds in the petal, 19 compounds in the stem, 11 compounds in the receptacle, 20 compounds in the stamen, and 13 compounds in the style. Antioxidant experiments revealed that the FCM's various compounds had observable impacts in scavenging free radicals (38.44%-58.35%). The aforementioned study demonstrates that the pomelo by-products were developed into useful components using ultrasonic aided extraction technique. FCM has flavor-rich compounds that make it suited for use as an antioxidant tea beverage and offers practical suggestions for preparing healthy products.


Subject(s)
Antioxidants , Citrus , Antioxidants/chemistry , Citrus/chemistry , Flowers/chemistry , Plant Extracts/chemistry , Tea
10.
Nat Prod Res ; : 1-8, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861244

ABSTRACT

Two metal chelates of Dioscorea oppositifolia L. peel polysaccharides (DTP) were prepared: iron chelate (DTP-Fe) and zinc chelate (DTP-Zn). The physicochemical properties of the polysaccharide and its metal chelates were assessed by UV-Vis absorption spectroscopy, Fourier-transform infra-red spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Antioxidant activities were evaluated by DPPH, ABTS + and hydroxyl radical scavenging assays. According to ICP-MS, the iron content of DTP-Fe was 9.47%, while the zinc content of DTP-Zn was 4.02%. The antioxidant capacity of DTP-Fe increased with the increase of concentration, and its overall activity was higher than that of DTP and DTP-Zn. This polysaccharide-iron chelate can be developed and utilised as an antioxidant and multifunctional iron supplement. DTP-Zn showed the potential to be a natural antioxidant and zinc supplement food.

11.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570601

ABSTRACT

Zanthoxylum myriacanthum Wall. ex Hook. f., a plant belonging to the Rutaceae family and the Zanthoxylum genus, is extensively utilized for its medicinal properties and as a culinary seasoning in China and Southeast Asian countries. However, the chemical composition and biological activities of Z. myriacanthum branches and leaves remain insufficiently explored. In this study, the volatile and non-volatile components of Z. myriacanthum branches and leaves were analyzed using GC-MS and UPLC-Q-Orbitrap HRMS techniques. A total of 78 volatile compounds and 66 non-volatile compounds were identified. The volatile compounds were predominantly terpenoids and aliphatic compounds, while the non-volatile compounds were primarily flavonoids and alkaloids. The branches contained 52 volatile compounds and 33 non-volatile compounds, whereas the leaves contained 48 volatile compounds and 40 non-volatile compounds. The antioxidant activities of the methanol extracts from Z. myriacanthum branches and leaves were evaluated using ABTS and DPPH free-radical-scavenging assays, both of which demonstrated certain antioxidant activity. The methanol extract of leaves demonstrated significantly higher antioxidant activity compared to that of the branches, possibly due to the higher presence of flavonoids and phenols in the leaves, with IC50 values of 7.12 ± 0.257 µg/mL and 1.22 × 102 ± 5.01 µg/mL for ABTS and DPPH, respectively. These findings enhance our understanding of the chemical composition and antioxidant potential of Z. myriacanthum. The plant holds promise as a natural source of antioxidants for applications in pharmaceuticals, cosmetics, and functional foods. Further research can explore its broader biological activities and potential applications.


Subject(s)
Antioxidants , Zanthoxylum , Antioxidants/chemistry , Gas Chromatography-Mass Spectrometry , Zanthoxylum/chemistry , Plant Extracts/chemistry , Methanol/analysis , Plant Leaves/chemistry , Flavonoids/chemistry
12.
Nutr Health ; : 2601060231183734, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408433

ABSTRACT

Background: Honey is a product of the hive elaborated by the bees of the species Apis mellifera. As well as Pistacia lentiscus, is a species widely used in traditional medicine that is part of a large family of Anacardiaceae. Aims: To determine the biological properties including the antioxidant activity of the mixture of the extract of P. lentiscus berries associated with honey at different concentrations (0.5%, 2%, 4%, 8% and 12%). Methods: Physicochemical parameters and phenolic compound amounts. The antioxidant activities (reducing power, FRAP, CUPRAC, TAC, DPPH, ABTS, and ferrozine) were also tested. Results: According to the physico-chemical parameters, the honey and the mixture analyzed are in conformity with the international standards. The results of the antioxidant assay gave a significant content of total phenolic compounds for the H/DP mixtures, the sample of honey alone analyzed exerts a weak antioxidant activity compared to the two mixtures made. Conclusion: The honey and Pistacia compound constitute an important source of antioxidants which intensifies very significantly the antioxidant activity of the blend.

13.
Int J Biol Macromol ; 245: 125507, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37355072

ABSTRACT

In this study, five polysaccharides were extracted from processed Cistanche deserticola. The processing included crude product, enzymatic hydrolysis, hot air drying, stir-baking with wine and high-pressure steaming, and these polysaccharides were named as CP-CDPs, EH-CDPs, HAD-CDPs, SBW-CDPs and HPS-CDPs, respectively. The structural characteristics and biological activities were explored. The results showed that processing changed properties of C. deserticola polysaccharides. CP-CDPs had the highest brightness value L*(93.84) and carbohydrate content (61.27 %). EH-CDPs had minimum Mw (1531.50 kDa), while SBW-CDPs had maximum Mw (2526.0 kDa). Glucose was major predominant monosaccharide in CP-CDPs (89.82 %), HAD-CDPs (79.3 %), SBW-CDPs (59.41 %) and HPS-CDPs (63.86 %), while galactose was major monosaccharide in EH-CDPs (29.44 %). According to SEM, SBW-CDPs showed compact structures, while HPS-CDPs and HAD-CDPs had similar looser structure than SBW-CDPs; meanwhile, CP-CDPs showed irregular agglomeration shape and EH-CDPs was dense blocky shape. The AFM showed SBW-CDPs had the largest molecular chain than other polysaccharides. When scavenging activity reaching 50 %, the concentrations of CP-CDPs, EH-CDPs, HAD-CDPs, SBW-CDPs, HPS-CDPs are 2.25, 0.25, 0.75, 1.8 and 1.5 mg/mL, respectively. This study sheds light on the effects of traditional Chinese medicine processing on characteristics, bioactivities of C. deserticola polysaccharides, and provides the basis for applications in food and pharmaceutical industries.


Subject(s)
Antioxidants , Cistanche , Antioxidants/pharmacology , Antioxidants/chemistry , Cistanche/chemistry , Plant Extracts/chemistry , Steam , Polysaccharides/pharmacology , Polysaccharides/chemistry
14.
Chem Biodivers ; 20(8): e202300290, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37391386

ABSTRACT

Sonchus oleraceus (L.) L. (Asteraceae) is an edible wild plant, known for its uses in traditional medicine. The aim of this study is to explore the phytochemical composition of the aerial parts (AP) and roots (R) of aqueous extracts of Sonchus oleraceus L. growing in Tunisia, using liquid chromatography-tandem mass spectrometry(LC/MS/MS), and determine the content of polyphenols and antioxidant activities. Results showed that aqueous extracts of AP and R contained, respectively, 195.25±33 µg/g and 118.66±14 µg/g gallic acid equivalent (GAE), and 52.58±7 µg/g and 3.2±0.3µg/g quercetin equivalent. AP and R extracts also contained tannins, 581.78±33 µg/g and 948.44±19 µg/g GAE. The AP extract in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activities, hydroxyl radical scavenging (OH-) and in cupric reducing antioxidant activity (CUPRAC) assays were respectively 0.325±0.036 mg/mL, 0.053±0.018 mg/mL, 0.696±0.031 mg/mL and 60.94±0.004 µMTE/g, while the R extract using the same assays showed, 0.209±0.052 mg/mL, 0.034±0.002 mg/mL, 0.444±0.014 mg/mL and 50.63±0.006 µM Trolox equivalent/g, respectively. A total of 68 compounds were tentatively identified by LC/MS/MS in both extracts in which quinic acid, pyrogallol, osthrutin, piperine, gentisic acid, fisetin, luteolin, caffeic acid, gingerol, were the most abundant in the LC/MS/MS spectrum. Many of these metabolites were found for the first time in Tunisian Sonchus oleraceus L. which may take account for the antioxidant activities exhibited by the plant.


Subject(s)
Antioxidants , Sonchus , Antioxidants/pharmacology , Antioxidants/chemistry , Tandem Mass Spectrometry/methods , Plant Extracts/chemistry , Polyphenols/chemistry , Gallic Acid , Flavonoids/chemistry
15.
Molecules ; 28(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298979

ABSTRACT

Blumea balsamifera (L.) DC., a perennial herb in the Asteraceae family native to China and Southeast Asia, has a notable history of medicinal use due to its pharmacological properties. Using UPLC-Q-Orbitrap HRMS techniques, we systematically investigated the chemical constituents of this plant. A total of 31 constituents were identified, of which 14 were flavonoid compounds. Significantly, 18 of these compounds were identified in B. balsamifera for the first time. Furthermore, the mass spectrometry fragmentation patterns of significant chemical constituents identified in B. balsamifera were analyzed, providing important insights into their structural characteristics. The in vitro antioxidative potential of the methanol extract of B. balsamifera was assessed using DPPH and ABTS free-radical-scavenging assays, total antioxidative capacity, and reducing power. The antioxidative activity exhibited a direct correlation with the mass concentration of the extract, with IC50 values of 105.1 ± 0.503 µg/mL and 12.49 ± 0.341 µg/mL for DPPH and ABTS, respectively. For total antioxidant capacity, the absorbance was 0.454 ± 0.009 at 400 µg/mL. In addition, the reducing power was 1.099 ± 0.03 at 2000 µg/mL. This study affirms that UPLC-Q-Orbitrap HRMS can effectively discern the chemical constituents in B. balsamifera, primarily its flavonoid compounds, and substantiates its antioxidative properties. This underscores its potential utility as a natural antioxidant in the food, pharmaceutical, and cosmetics sectors. This research provides a valuable theoretical basis and reference value for the comprehensive development and utilization of B. balsamifera and expands our understanding of this medicinally valuable plant.


Subject(s)
Antioxidants , Asteraceae , Antioxidants/pharmacology , Antioxidants/chemistry , Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Asteraceae/chemistry , Flavonoids/chemistry
16.
Arch Insect Biochem Physiol ; 113(3): e22017, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37185885

ABSTRACT

In the context of climate change, the Ivorian cotton industry is facing with the loss of sensitivity of pests (Helicoverpa armigera) and the appearance of new so-called emerging insects. Faced with this situation, cotton producers tend to use insecticide products in high doses, in excess of the norm. However, the misuse of chemical products poses many health risks. Therefore, to limit the use of chemicals, aqueous extracts of local plants with insecticidal properties were examined in the laboratory and in the field. Four local plant species were selected [Anacardium occidentale (Anarcardier); Azadirachta indica (Neem); Hyptis suaveolens (Hyptis) and Tephrosia vogelii (Tephrosia)]. After determining the chemical profiles of the four extracts by high performance liquid chromatography (HPLC)-mass spectrometry, their inhibitory activities were assessed in cholinesterase and tyrosinase. The sensitivity of Helicoverpa armigera larvae was evaluated by ingesting the aqueous extracts at several concentrations ranging from 2% to 64% in an artificial nutrient substrate. Then, the mortality rates of the larvae during 72 h were evaluated and the lethal concentrations were determined. The results of chemical analyses (HPLC) showed that the richest aqueous extract in phytochemicals with 54 elements detected was that of cashew (A. occidentale). T. vogelii, A. indica and H. suaveolens presented 44, 45, and 39 chemical compounds, respectively. In addition, the total phenolic content was higher in A. occidentale (110.67 mg gallic acid equivalents/g) followed by A. indica (42.43 mg gallic acid equivalents/g). The highest antioxidant ability was observed with the aqueous extract of cashew (A. occidentale). Anti-enzymatic activities such as acetylcholinesterase, butyrylcholinesterase and tyrosinase inhibition were most pronounced in A. occidentale (2.35 ± 0.02 mg galanthamine equivalent/g, 3.77 ± 0.01 mg galanthamine equivalent/g and 71.28 ± 0.07 mg kojic acid equivalent/g, respectively). The most toxic aqueous extract for H. armigera larvae was that of cashew with a lethal concentration LC50 = 11.68%. Moreover, the principal component analysis performed showed that the insecticidal activity is strongly correlated with the antioxidant and enzymatic activities of the aqueous extracts. Then, the hierarchical ascending classification showed cashew as the best plant. For the sustainability of cotton production, it would be necessary to limit the use of chemical-synthetic insecticides through the use of plant extracts, especially from cashew leaves.


Subject(s)
Insecticides , Moths , Animals , Larva , Insecticides/pharmacology , Insecticides/chemistry , Antioxidants/pharmacology , Cote d'Ivoire , Gossypium , Galantamine , Acetylcholinesterase , Butyrylcholinesterase , Monophenol Monooxygenase , Plant Extracts/pharmacology , Gallic Acid
17.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239966

ABSTRACT

Antioxidant properties and phenolic acid content in the pulp of five pumpkin species were evaluated. The following species cultivated in Poland were included: Cucurbita maxima 'Bambino', Cucurbita pepo 'Kamo Kamo', Cucurbita moschata 'Butternut', Cucurbita ficifolia 'Chilacayote Squash', and Cucurbita argyrosperma 'Chinese Alphabet'. The content of polyphenolic compounds was determined by ultra-high performance liquid chromatography coupled with HPLC, while the total content of phenols and flavonoids and antioxidant properties were determined by spectrophotometric methods. Ten phenolic compounds (protocatechuic acid, p-hydroxybenzoic acid, catechin, chlorogenic acid, caffeic acid, p-coumaric acid, syringic acid, ferulic acid, salicylic acid, kaempferol) were identified. Phenolic acids were the most abundant compounds; the amount of syringic acid was found to be the highest, ranging from 0.44 (C. ficifolia) to 6.61 mg∙100 g-1 FW (C. moschata). Moreover, two flavonoids were detected: catechin and kaempferol. They were found at their highest level of content in C. moschata pulp (catechins: 0.31 mg∙100 g-1 FW; kaempferol: 0.06 mg∙100 g-1 FW), with the lowest amount detected in C. ficifolia (catechins: 0.15 mg∙100 g-1 FW; kaempferol below the limit of detection). Analysis of antioxidant potential showed significant differences depending on the species and the test used. The DPPH radical scavenging activity of C. maxima was 1.03 times higher than C. ficiofilia pulp and 11.60 times higher than C. pepo. In the case of the FRAP assay, the multiplicity of FRAP radical activity in C. maxima pulp was 4.65 times higher than C. Pepo pulp and only 1.08 times higher compared to C. ficifolia pulp. The study findings show the high health-promoting value of pumpkin pulp; however, the content of phenolic acids and antioxidant properties are species dependent.


Subject(s)
Catechin , Cucurbita , Antioxidants/chemistry , Kaempferols , Poland , Hydroxybenzoates/analysis , Phenols/chemistry , Flavonoids , Plant Extracts/chemistry
18.
Molecules ; 28(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37241861

ABSTRACT

In the present study, response surface methodology (RSM) and Box-Behnken design (BBD) were employed to optimize the conditions for the extraction of C. maxima albedo from agricultural waste, to obtain notable phytochemicals. Ethanol concentration, extraction temperature, and extraction time were included as key factors contributing to the extraction. The results showed that the optimum extraction condition for C. maxima albedo was 50% (v/v) aqueous ethanol at 30 °C for 4 h, which provided total phenolic contents and total flavonoid contents at 15.79 mg of gallic equivalent/g dry weight (DW) and 4.50 mg of quercetin equivalent/g DW, respectively. Considerable amounts of hesperidin and naringenin at 161.03 and 3430.41 µg/g DW, respectively, were detected in the optimized extract using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The extract was later subjected to a test for its enzyme-inhibitory activities against key enzymes relevant to Alzheimer's disease (AD), obesity, and diabetes as well as for its mutagenicity potential. Among enzyme inhibitory activities, the extract showed the highest inhibitory strength against ß-secretase (BACE-1), which is a drug target for AD treatment. The extract was also devoid of mutagenicity properties. Overall, this study demonstrated a simple and optimal extraction procedure for C. maxima albedo with a significant quantity of phytochemicals, health benefits, and genome safety.


Subject(s)
Citrus , Tandem Mass Spectrometry , Flavonoids/pharmacology , Flavonoids/chemistry , Antioxidants/chemistry , Ethanol , Phytochemicals/pharmacology , Phytochemicals/analysis , Plant Extracts/chemistry
19.
Curr Top Med Chem ; 23(13): 1214-1220, 2023.
Article in English | MEDLINE | ID: mdl-37005525

ABSTRACT

Alzheimer's disease (AD), a prevalent multiple neurodegenerative disease, has gained attention, particularly in the aging population. However, presently available therapies merely focus on alleviating the symptoms of AD and fail to slow disease progression significantly. Traditional Chinese medicine (TCM) has been used to ameliorate symptoms or interfere with the pathogenesis of aging-associated diseases for many years based on disease-modifying in multiple pathological roles with multi-targets, multi-systems and multi-aspects. Mahonia species as a TCM present potential for anti-inflammatory activity, antioxidant activity, anti-acetylcholinesterase activity, and antiamyloid- beta activity that was briefly discussed in this review. They are regarded as promising drug candidates for AD therapy. The findings in this review support the use of Mahonia species as an alternative therapy source for treating AD.


Subject(s)
Alzheimer Disease , Mahonia , Neurodegenerative Diseases , Medicine, Chinese Traditional , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Antioxidants/pharmacology , Antioxidants/therapeutic use
20.
Metabol Open ; 18: 100241, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37089824

ABSTRACT

Background: Artesunate (ART) is a semi-synthetized molecule from Artemisinin, an active compound isolated from the medicinal plant Artemisia annua, widely used for the treatment of malaria. Previous studies reported that ART may exert a dual effect on the liver. Accordingly, this study investigated the potential protective action of ART against Acetaminophen (APAP) and Carbon tetrachloride (CCl4)-induced hepatotoxicity in primary mice hepatocytes, in comparison to that of flavonoid extracted from A. annua (FAA). In addition, the antioxidant properties of FAA were also assessed. Methods: The antioxidant activities of FAA and Ascorbic acid (ASC) (0.01-100 µg/mL) were assessed through inhibition of lipid peroxidation, reduction of ferric and phosphomolydenum, and hydroxyl and DPPH radicals scavenging assays. The hepatoprotective effects of FAA and ART (0.1-100 µg/mL) were evaluated against APAP (11 mM) or CCl4 (4 mM) induced oxidative damage in primary mouse hepatocytes. Biochemical parameters associated with hepatotoxicity assessed include cell viability, cell membrane integrity, cellular glutathione, and antioxidant enzyme activities. Results: The obtained finding revealed FAA displayed a remarkable antioxidant activities as evidenced by the low IC50/EC50 values (3.85-19.32 µg/mL), comparable to that of ASC (3.26-18.04 µg/mL). When tested at 10 µg/mL, both FAA and ART significantly (p˂0.05) preserved cell viability, inhibited alanine aminotransferase leakage and lipid membrane peroxidation, and restored superoxide dismutase and catalase activities and glutathione content induced by APAP or CCl4 in a similar way as Silymarin. However, ART showed a significant (p˂0.05) cytotoxic effect on hepatocytes at 100 and 1000 µg/mL and did not confer obvious protection at 100 µg/mL. Conclusion: Overall, our data demonstrated that ART harms mice hepatocytes at high concentration while conferring relative protection against APAP and CCl4-hepatotoxicity at low concentration. In contrast, FAA effectively protects liver cells without cytotoxicity effect, event at 100 µg/mL. Accordingly, ART should be given to the patient only under a medical prescription.

SELECTION OF CITATIONS
SEARCH DETAIL