Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Rev. Fund. Educ. Méd. (Ed. impr.) ; 27(2): 59-61, Abr. 2024.
Article in Spanish | IBECS | ID: ibc-VR-22

ABSTRACT

Introducción: La integración de la inteligencia artificial (IA) en la educación médica redefine paradigmas, optimiza méto-dos y forja una simbiosis tecnológica. Desarrollo: La IA potencia simulaciones clínicas, mejora evaluaciones y desarrolla habilidades blandas, redefiniendo lainteracción médico-paciente. Conclusiones: Aunque persisten desafíos éticos, la colaboración interdisciplinaria y la adaptabilidad son cruciales. La IA marca un hito en la evolución médica al elevar la calidad asistencial y establecer estándares para una colaboración armoniosa entre tecnología y compasión.(AU)


Introduction: The incorporation of artificial intelligence (AI) into medical education redefines paradigms, optimisesmethods and forges a technological symbiosis. Development: AI enhances clinical simulations, improves assessments and develops soft skills, thereby redefining doctor-patient interaction. Conclusions: Although ethical challenges remain, interdisciplinary collaboration and adaptability are crucial. AI marks a milestone in the evolution of medicine by raising the quality of care and setting standards for harmonious collaboration between technology and compassion.(AU)


Subject(s)
Humans , Male , Female , Education, Medical , Artificial Intelligence , Clinical Clerkship , Computer Literacy , Simulation Training , Professional Practice , Interdisciplinary Placement
2.
Front Toxicol ; 6: 1377542, 2024.
Article in English | MEDLINE | ID: mdl-38605940

ABSTRACT

Though the portfolio of medicines that are extending and improving the lives of patients continues to grow, drug discovery and development remains a challenging business on its best day. Safety liabilities are a significant contributor to development attrition where the costliest liabilities to both drug developers and patients emerge in late development or post-marketing. Animal studies are an important and influential contributor to the current drug discovery and development paradigm intending to provide evidence that a novel drug candidate can be used safely and effectively in human volunteers and patients. However, translational gaps-such as toxicity in patients not predicted by animal studies-have prompted efforts to improve their effectiveness, especially in safety assessment. More holistic monitoring and "digitalization" of animal studies has the potential to enrich study outcomes leading to datasets that are more computationally accessible, translationally relevant, replicable, and technically efficient. Continuous monitoring of animal behavior and physiology enables longitudinal assessment of drug effects, detection of effects during the animal's sleep and wake cycles and the opportunity to detect health or welfare events earlier. Automated measures can also mitigate human biases and reduce subjectivity. Reinventing a conservative, standardized, and traditional paradigm like drug safety assessment requires the collaboration and contributions of a broad and multi-disciplinary stakeholder group. In this perspective, we review the current state of the field and discuss opportunities to improve current approaches by more fully leveraging the power of sensor technologies, artificial intelligence (AI), and animal behavior in a home cage environment.

3.
Neurosci Conscious ; 2024(1): niae013, 2024.
Article in English | MEDLINE | ID: mdl-38618488

ABSTRACT

Technological advances raise new puzzles and challenges for cognitive science and the study of how humans think about and interact with artificial intelligence (AI). For example, the advent of large language models and their human-like linguistic abilities has raised substantial debate regarding whether or not AI could be conscious. Here, we consider the question of whether AI could have subjective experiences such as feelings and sensations ('phenomenal consciousness'). While experts from many fields have weighed in on this issue in academic and public discourse, it remains unknown whether and how the general population attributes phenomenal consciousness to AI. We surveyed a sample of US residents (n = 300) and found that a majority of participants were willing to attribute some possibility of phenomenal consciousness to large language models. These attributions were robust, as they predicted attributions of mental states typically associated with phenomenality-but also flexible, as they were sensitive to individual differences such as usage frequency. Overall, these results show how folk intuitions about AI consciousness can diverge from expert intuitions-with potential implications for the legal and ethical status of AI.

4.
EBioMedicine ; 102: 105075, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565004

ABSTRACT

BACKGROUND: AI models have shown promise in performing many medical imaging tasks. However, our ability to explain what signals these models have learned is severely lacking. Explanations are needed in order to increase the trust of doctors in AI-based models, especially in domains where AI prediction capabilities surpass those of humans. Moreover, such explanations could enable novel scientific discovery by uncovering signals in the data that aren't yet known to experts. METHODS: In this paper, we present a workflow for generating hypotheses to understand which visual signals in images are correlated with a classification model's predictions for a given task. This approach leverages an automatic visual explanation algorithm followed by interdisciplinary expert review. We propose the following 4 steps: (i) Train a classifier to perform a given task to assess whether the imagery indeed contains signals relevant to the task; (ii) Train a StyleGAN-based image generator with an architecture that enables guidance by the classifier ("StylEx"); (iii) Automatically detect, extract, and visualize the top visual attributes that the classifier is sensitive towards. For visualization, we independently modify each of these attributes to generate counterfactual visualizations for a set of images (i.e., what the image would look like with the attribute increased or decreased); (iv) Formulate hypotheses for the underlying mechanisms, to stimulate future research. Specifically, present the discovered attributes and corresponding counterfactual visualizations to an interdisciplinary panel of experts so that hypotheses can account for social and structural determinants of health (e.g., whether the attributes correspond to known patho-physiological or socio-cultural phenomena, or could be novel discoveries). FINDINGS: To demonstrate the broad applicability of our approach, we present results on eight prediction tasks across three medical imaging modalities-retinal fundus photographs, external eye photographs, and chest radiographs. We showcase examples where many of the automatically-learned attributes clearly capture clinically known features (e.g., types of cataract, enlarged heart), and demonstrate automatically-learned confounders that arise from factors beyond physiological mechanisms (e.g., chest X-ray underexposure is correlated with the classifier predicting abnormality, and eye makeup is correlated with the classifier predicting low hemoglobin levels). We further show that our method reveals a number of physiologically plausible, previously-unknown attributes based on the literature (e.g., differences in the fundus associated with self-reported sex, which were previously unknown). INTERPRETATION: Our approach enables hypotheses generation via attribute visualizations and has the potential to enable researchers to better understand, improve their assessment, and extract new knowledge from AI-based models, as well as debug and design better datasets. Though not designed to infer causality, importantly, we highlight that attributes generated by our framework can capture phenomena beyond physiology or pathophysiology, reflecting the real world nature of healthcare delivery and socio-cultural factors, and hence interdisciplinary perspectives are critical in these investigations. Finally, we will release code to help researchers train their own StylEx models and analyze their predictive tasks of interest, and use the methodology presented in this paper for responsible interpretation of the revealed attributes. FUNDING: Google.


Subject(s)
Algorithms , Cataract , Humans , Cardiomegaly , Fundus Oculi , Artificial Intelligence
5.
JMIR Med Inform ; 12: e56572, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630536

ABSTRACT

Inhaled corticosteroid (ICS) is a mainstay treatment for controlling asthma and preventing exacerbations in patients with persistent asthma. Many types of ICS drugs are used, either alone or in combination with other controller medications. Despite the widespread use of ICSs, asthma control remains suboptimal in many people with asthma. Suboptimal control leads to recurrent exacerbations, causes frequent ER visits and inpatient stays, and is due to multiple factors. One such factor is the inappropriate ICS choice for the patient. While many interventions targeting other factors exist, less attention is given to inappropriate ICS choice. Asthma is a heterogeneous disease with variable underlying inflammations and biomarkers. Up to 50% of people with asthma exhibit some degree of resistance or insensitivity to certain ICSs due to genetic variations in ICS metabolizing enzymes, leading to variable responses to ICSs. Yet, ICS choice, especially in the primary care setting, is often not tailored to the patient's characteristics. Instead, ICS choice is largely by trial and error and often dictated by insurance reimbursement, organizational prescribing policies, or cost, leading to a one-size-fits-all approach with many patients not achieving optimal control. There is a pressing need for a decision support tool that can predict an effective ICS at the point of care and guide providers to select the ICS that will most likely and quickly ease patient symptoms and improve asthma control. To date, no such tool exists. Predicting which patient will respond well to which ICS is the first step toward developing such a tool. However, no study has predicted ICS response, forming a gap. While the biologic heterogeneity of asthma is vast, few, if any, biomarkers and genotypes can be used to systematically profile all patients with asthma and predict ICS response. As endotyping or genotyping all patients is infeasible, readily available electronic health record data collected during clinical care offer a low-cost, reliable, and more holistic way to profile all patients. In this paper, we point out the need for developing a decision support tool to guide ICS selection and the gap in fulfilling the need. Then we outline an approach to close this gap via creating a machine learning model and applying causal inference to predict a patient's ICS response in the next year based on the patient's characteristics. The model uses electronic health record data to characterize all patients and extract patterns that could mirror endotype or genotype. This paper supplies a roadmap for future research, with the eventual goal of shifting asthma care from one-size-fits-all to personalized care, improve outcomes, and save health care resources.

6.
Res Sq ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559222

ABSTRACT

Diabetic eye disease (DED) is a leading cause of blindness in the world. Early detection and treatment of DED have been shown to be both sight-saving and cost-effective. As such, annual testing for DED is recommended for adults with diabetes and is a Healthcare Effectiveness Data and Information Set (HEDIS) measure. However, adherence to this guideline has historically been low, and access to this sight-saving intervention has particularly been limited for specific populations, such as Black or African American patients. In 2018, the US Food and Drug Agency (FDA) De Novo cleared autonomous artificial intelligence (AI) for diagnosing DED in a primary care setting. In 2020, Johns Hopkins Medicine (JHM), an integrated healthcare system with over 30 primary care sites, began deploying autonomous AI for DED testing in some of its primary care clinics. In this retrospective study, we aimed to determine whether autonomous AI implementation was associated with increased adherence to annual DED testing, and whether this was different for specific populations. JHM primary care sites were categorized as "non-AI" sites (sites with no autonomous AI deployment over the study period and where patients are referred to eyecare for DED testing) or "AI-switched" sites (sites that did not have autonomous AI testing in 2019 but did by 2021). We conducted a difference-in-difference analysis using a logistic regression model to compare change in adherence rates from 2019 to 2021 between non-AI and AI-switched sites. Our study included all adult patients with diabetes managed within our health system (17,674 patients for the 2019 cohort and 17,590 patients for the 2021 cohort) and has three major findings. First, after controlling for a wide range of potential confounders, our regression analysis demonstrated that the odds ratio of adherence at AI-switched sites was 36% higher than that of non-AI sites, suggesting that there was a higher increase in DED testing between 2019 and 2021 at AI-switched sites than at non-AI sites. Second, our data suggested autonomous AI improved access for historically disadvantaged populations. The adherence rate for Black/African Americans increased by 11.9% within AI-switched sites whereas it decreased by 1.2% within non-AI sites over the same time frame. Third, the data suggest that autonomous AI improved health equity by closing care gaps. For example, in 2019, a large adherence rate gap existed between Asian Americans and Black/African Americans (61.1% vs. 45.5%). This 15.6% gap shrank to 3.5% by 2021. In summary, our real-world deployment results in a large integrated healthcare system suggest that autonomous AI improves adherence to a HEDIS measure, patient access, and health equity for patients with diabetes - particularly in historically disadvantaged patient groups. While our findings are encouraging, they will need to be replicated and validated in a prospective manner across more diverse settings.

7.
Curr Cardiol Rev ; 20(4): 86-100, 2024.
Article in English | MEDLINE | ID: mdl-38629366

ABSTRACT

Cardiovascular disease (CVD) remains a foremost global health concern, necessitating ongoing exploration of innovative therapeutic strategies. This review surveys the latest developments in cardiovascular therapeutics, offering a comprehensive overview of emerging approaches poised to transform disease management. The examination begins by elucidating the current epidemiological landscape of CVD and the economic challenges it poses to healthcare systems. It proceeds to scrutinize the limitations of traditional therapies, emphasizing the need for progressive interventions. The core focus is on novel pharmacological interventions, including advancements in drug development, targeted therapies, and repurposing existing medications. The burgeoning field of gene therapy and its potential in addressing genetic predispositions to cardiovascular disorders are explored, alongside the integration of artificial intelligence and machine learning in risk assessment and treatment optimization. Non-pharmacological interventions take center stage, with an exploration of digital health technologies, wearable devices, and telemedicine as transformative tools in CVD management. Regenerative medicine and stem cell therapies, offering promises of tissue repair and functional recovery, are investigated for their potential impact on cardiac health. This review also delves into the interplay of lifestyle modifications, diet, exercise, and behavioral changes, emphasizing their pivotal role in cardiovascular health and disease prevention. As precision medicine gains prominence, this synthesis of emerging therapeutic modalities aims to guide clinicians and researchers in navigating the dynamic landscape of cardiovascular disease management, fostering a collective effort to alleviate the global burden of CVD and promote a healthier future.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/therapy , Disease Management , Cardiovascular Agents/therapeutic use , Genetic Therapy/methods , Precision Medicine/methods
8.
Health Promot Perspect ; 14(1): 3-8, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38623352

ABSTRACT

The healthcare industry is constantly evolving to bridge the inequality gap and provide precision care to its diverse population. One of these approaches is the integration of digital health tools into healthcare delivery. Significant milestones such as reduced maternal mortality, rising and rapidly proliferating health tech start-ups, and the use of drones and smart devices for remote health service delivery, among others, have been reported. However, limited access to family planning, migration of health professionals, climate change, gender inequity, increased urbanization, and poor integration of private health firms into healthcare delivery rubrics continue to impair the attainment of universal health coverage and health equity. Health policy development for an integrated health system without stigma, addressing inequalities of all forms, should be implemented. Telehealth promotion, increased access to infrastructure, international collaborations, and investment in health interventions should be continuously advocated to upscale the current health landscape and achieve health equity.

9.
Rev. int. med. cienc. act. fis. deporte ; 24(95): 1-15, mar.-2024. ilus, graf, tab
Article in English | IBECS | ID: ibc-ADZ-326

ABSTRACT

Artificial intelligence (AI) has advanced from a theoretical concept to a practical application thanks to the quick development of computer science and information technology. AI, a fundamental component of contemporary civilization, has a growing impact on all facets of daily life, including sports training. Artificial intelligence (AI) can be viewed as a supporting technology that specifically supports athletes' physical education training through methods like data analysis and simulation of training scenarios. Even though research on AI is still in its early stages, it is important to investigate how it may be used in sports training becausethis cutting-edge technology could in some ways make it easier for individuals to train physically. This study begins by reviewing the prior work on AI applications.In, this study investigates three specific situations of AI application in sports training and describes the key concepts based on the core idea and related research findings of AI. This study focuses on the close connection between artificial intelligence (AI) and physical education instruction and emphasises the benefits of AI, such as its use, ease, and innovation. This study creates the appropriate information data interface mode based on the integration of the sports tourist sector and the culture industry. (AU)


Subject(s)
Artificial Intelligence , 51675 , Sports , Informatics , Technology
10.
Phytomedicine ; 128: 155479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493714

ABSTRACT

BACKGROUND: Warfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability. PURPOSE: The aim is to comprehensively analyze the advanced warfarin dosing algorithm based on pharmacometrics and machine learning models of personalized warfarin dosage. METHODS: A bibliometric analysis of the literature retrieved from PubMed and Scopus was performed using VOSviewer. The relevant literature that reported the precise dosage of warfarin calculation was retrieved from the database. The multiple linear regression (MLR) algorithm was excluded because a recent systematic review that mainly reviewed this algorithm has been reported. The following terms of quantitative systems pharmacology, mechanistic model, physiologically based pharmacokinetic model, artificial intelligence, machine learning, pharmacokinetic, pharmacodynamic, pharmacokinetics, pharmacodynamics, and warfarin were added as MeSH Terms or appearing in Title/Abstract into query box of PubMed, then humans and English as filter were added to retrieve the literature. RESULTS: Bibliometric analysis revealed important co-occuring MeShH and index keywords. Further, the United States, China, and the United Kingdom were among the top countries contributing in this domain. Some studies have established personalized warfarin dosage models using pharmacometrics and machine learning-based algorithms. There were 54 related studies, including 14 pharmacometric models, 31 artificial intelligence models, and 9 model evaluations. Each model has its advantages and disadvantages. The pharmacometric model contains biological or pharmacological mechanisms in structure. The process of pharmacometric model development is very time- and labor-intensive. Machine learning is a purely data-driven approach; its parameters are more mathematical and have less biological interpretation. However, it is faster, more efficient, and less time-consuming. Most published models of machine learning algorithms were established based on cross-sectional data sourced from the database. CONCLUSION: Future research on personalized warfarin medication should focus on combining the advantages of machine learning and pharmacometrics algorithms to establish a more robust warfarin dosage algorithm. Randomized controlled trials should be performed to evaluate the established algorithm of warfarin dosage. Moreover, a more user-friendly and accessible warfarin precision medicine platform should be developed.


Subject(s)
Anticoagulants , Machine Learning , Precision Medicine , Warfarin , Warfarin/pharmacokinetics , Warfarin/pharmacology , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Anticoagulants/administration & dosage , Humans , Precision Medicine/methods , Bibliometrics , Algorithms
11.
EPMA J ; 15(1): 1-23, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463624

ABSTRACT

Worldwide stroke is the second leading cause of death and the third leading cause of death and disability combined. The estimated global economic burden by stroke is over US$891 billion per year. Within three decades (1990-2019), the incidence increased by 70%, deaths by 43%, prevalence by 102%, and DALYs by 143%. Of over 100 million people affected by stroke, about 76% are ischemic stroke (IS) patients recorded worldwide. Contextually, ischemic stroke moves into particular focus of multi-professional groups including researchers, healthcare industry, economists, and policy-makers. Risk factors of ischemic stroke demonstrate sufficient space for cost-effective prevention interventions in primary (suboptimal health) and secondary (clinically manifested collateral disorders contributing to stroke risks) care. These risks are interrelated. For example, sedentary lifestyle and toxic environment both cause mitochondrial stress, systemic low-grade inflammation and accelerated ageing; inflammageing is a low-grade inflammation associated with accelerated ageing and poor stroke outcomes. Stress overload, decreased mitochondrial bioenergetics and hypomagnesaemia are associated with systemic vasospasm and ischemic lesions in heart and brain of all age groups including teenagers. Imbalanced dietary patterns poor in folate but rich in red and processed meat, refined grains, and sugary beverages are associated with hyperhomocysteinaemia, systemic inflammation, small vessel disease, and increased IS risks. Ongoing 3PM research towards vulnerable groups in the population promoted by the European Association for Predictive, Preventive and Personalised Medicine (EPMA) demonstrates promising results for the holistic patient-friendly non-invasive approach utilising tear fluid-based health risk assessment, mitochondria as a vital biosensor and AI-based multi-professional data interpretation as reported here by the EPMA expert group. Collected data demonstrate that IS-relevant risks and corresponding molecular pathways are interrelated. For examples, there is an evident overlap between molecular patterns involved in IS and diabetic retinopathy as an early indicator of IS risk in diabetic patients. Just to exemplify some of them such as the 5-aminolevulinic acid/pathway, which are also characteristic for an altered mitophagy patterns, insomnia, stress regulation and modulation of microbiota-gut-brain crosstalk. Further, ceramides are considered mediators of oxidative stress and inflammation in cardiometabolic disease, negatively affecting mitochondrial respiratory chain function and fission/fusion activity, altered sleep-wake behaviour, vascular stiffness and remodelling. Xanthine/pathway regulation is involved in mitochondrial homeostasis and stress-driven anxiety-like behaviour as well as molecular mechanisms of arterial stiffness. In order to assess individual health risks, an application of machine learning (AI tool) is essential for an accurate data interpretation performed by the multiparametric analysis. Aspects presented in the paper include the needs of young populations and elderly, personalised risk assessment in primary and secondary care, cost-efficacy, application of innovative technologies and screening programmes, advanced education measures for professionals and general population-all are essential pillars for the paradigm change from reactive medical services to 3PM in the overall IS management promoted by the EPMA.

12.
Waste Manag ; 179: 154-162, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38479254

ABSTRACT

Every year human discharges about 350 million tons of plastic waste into the environment and can be projected to triple in 2060 without any attempts to change situation. From 1970 to 2019, an estimation of 130 million tons of plastic waste was accumulated into the rivers, lakes and sea, while only 27 % is recycled and utilized. Moreover, waste treatment plants in most places around the world are using out-of-date technology, may pose a threat to the health of the workers. Therefore, it is essential to modernize these systems for protecting human health. This paper proposes fine-tuning DETR, which applies Artificial Intelligent in plastic waste sorting system. Consequently, this study analyzed the applicability of fine-tuning DETR in the domain of plastic waste categorization and its potential drawbacks. For fair experiment and evaluation, model candidates were trained and evaluated on an industrial plastic waste dataset. The fine-tuning DETR outperformed other candidates in the context of critical indicators, from accuracy (25.1 mAP), processing speed (28 FPS) to computational cost (GFLOPs 86). Furthermore, fine-tuning DETR possesses the capability of autonomous operation without requiring human intervention, distinguishing this candidate from other prevalent algorithms. Our research demonstrates that, fine-tuning DETR specifically and Transformer-based algorithms in general, are entirely suitable and hold significant potential for large-scale application in holistic plastic waste sorting systems.


Subject(s)
Piperazines , Plastics , Recycling , Humans , Industrial Waste
13.
Comput Biol Med ; 172: 108235, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460311

ABSTRACT

Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies. Data-driven approaches, such as machine learning (ML) and deep learning (DL) have emerged to improve existing computer-assisted solutions and enhance physicians' ECG interpretation of the complex mechanisms underlying CVD. However, many ML and DL models used to detect ECG-based CVD suffer from a lack of explainability, bias, as well as ethical, legal, and societal implications (ELSI). Despite the critical importance of these Trustworthy Artificial Intelligence (AI) aspects, there is a lack of comprehensive literature reviews that examine the current trends in ECG-based solutions for CVD diagnosis or prognosis that use ML and DL models and address the Trustworthy AI requirements. This review aims to bridge this knowledge gap by providing a systematic review to undertake a holistic analysis across multiple dimensions of these data-driven models such as type of CVD addressed, dataset characteristics, data input modalities, ML and DL algorithms (with a focus on DL), and aspects of Trustworthy AI like explainability, bias and ethical considerations. Additionally, within the analyzed dimensions, various challenges are identified. To these, we provide concrete recommendations, equipping other researchers with valuable insights to understand the current state of the field comprehensively.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnosis , Artificial Intelligence , Quality of Life , Electrocardiography , Machine Learning
14.
Comput Biol Med ; 172: 108258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467093

ABSTRACT

Artificial intelligence (AI) has revolutionized many fields, and its potential in healthcare has been increasingly recognized. Based on diverse data sources such as imaging, laboratory tests, medical records, and electrophysiological data, diagnostic AI has witnessed rapid development in recent years. A comprehensive understanding of the development status, contributing factors, and their relationships in the application of AI to medical diagnostics is essential to further promote its use in clinical practice. In this study, we conducted a bibliometric analysis to explore the evolution of task-specific to general-purpose AI for medical diagnostics. We used the Web of Science database to search for relevant articles published between 2010 and 2023, and applied VOSviewer, the R package Bibliometrix, and CiteSpace to analyze collaborative networks and keywords. Our analysis revealed that the field of AI in medical diagnostics has experienced rapid growth in recent years, with a focus on tasks such as image analysis, disease prediction, and decision support. Collaborative networks were observed among researchers and institutions, indicating a trend of global cooperation in this field. Additionally, we identified several key factors contributing to the development of AI in medical diagnostics, including data quality, algorithm design, and computational power. Challenges to progress in the field include model explainability, robustness, and equality, which will require multi-stakeholder, interdisciplinary collaboration to tackle. Our study provides a holistic understanding of the path from task-specific, mono-modal AI toward general-purpose, multimodal AI for medical diagnostics. With the continuous improvement of AI technology and the accumulation of medical data, we believe that AI will play a greater role in medical diagnostics in the future.


Subject(s)
Algorithms , Artificial Intelligence , Bibliometrics , Data Accuracy , Databases, Factual
15.
Front Med (Lausanne) ; 11: 1338598, 2024.
Article in English | MEDLINE | ID: mdl-38523910

ABSTRACT

Missed and delayed diagnoses of Hansen's disease (HD) are making the battle against it even more complex, increasing its transmission and significantly impacting those affected and their families. This strains public health systems and raises the risk of lifelong impairments and disabilities. Worryingly, the three countries most affected by HD witnessed a growth in new cases in 2022, jeopardizing the World Health Organization's targets to interrupt transmission. Artificial intelligence (AI) can help address these challenges by offering the potential for rapid case detection, customized treatment, and solutions for accessibility challenges-especially in regions with a shortage of trained healthcare professionals. This perspective article explores how AI can significantly impact the clinical management of HD, focusing on therapeutic strategies. AI can help classify cases, ensure multidrug therapy compliance, monitor geographical treatment coverage, and detect adverse drug reactions and antimicrobial resistance. In addition, AI can assist in the early detection of nerve damage, which aids in disability prevention and planning rehabilitation. Incorporating AI into mental health counseling is also a promising contribution to combating the stigma associated with HD. By revolutionizing therapeutic approaches, AI offers a holistic solution to reduce the burden of HD and improve patient outcomes.

16.
Int J Med Inform ; 185: 105385, 2024 May.
Article in English | MEDLINE | ID: mdl-38428201

ABSTRACT

BACKGROUND: Conversational agents (CAs) offer a sustainable approach to deliver personalized interventions and improve health outcomes. OBJECTIVES: To review how human-like communication and automation techniques of CAs in personalized healthcare interventions have been implemented. It is intended for designers and developers, computational scientists, behavior scientists, and biomedical engineers who aim at developing CAs for healthcare interventions. METHODOLOGY: A scoping review was conducted in accordance with PRISMA Extension for Scoping Review. A search was performed in May 2023 in Web of Science, Pubmed, Scopus and IEEE databases. Search results were extracted, duplicates removed, and the remaining results were screened. Studies that contained personalized and automated CAs within the healthcare domain were included. Information regarding study characterization, and human-like communication and automation techniques was extracted from articles that met the eligibility criteria. RESULTS: Twenty-three studies were selected. These articles described the development of CAs designed for patients to either self-manage their diseases (such as diabetes, mental health issues, cancer, asthma, COVID-19, and other chronic conditions) or to enhance healthy habits. The human-like communication characteristics studied encompassed aspects like system flexibility, personalization, and affective characteristics. Seven studies used rule-based models, eleven applied retrieval-based techniques for content delivery, five used AI models, and six integrated affective computing. CONCLUSIONS: The increasing interest in employing CAs for personalized healthcare interventions is noteworthy. The adaptability of dialogue structures and personalization features is still limited. Unlocking human-like conversations may encompass the use of affective computing and generative AI to help improve user engagement. Future research should focus on the integration of holistic methods to describe the end-user, and the safe use of generative models.


Subject(s)
Communication , Delivery of Health Care , Humans , Automation
17.
Cureus ; 16(1): e53270, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38435870

ABSTRACT

The development of artificial intelligence (AI) is disruptive and unstoppable, also in medicine. Because of the enormous quantity of data recorded during continuous monitoring and the peculiarity of our specialty where stratification and mitigation risk are some of the core aspects, anesthesiology and postoperative intensive care are fertile fields where new technologies find ample room for expansion. Recently, research efforts have focused on the development of a holistic technology that globally embraces the entire perioperative period rather than a fragmented approach where AI is developed to carry out specific tasks. This could potentially revolutionize the perioperative medicine we know today. In fact, AI will be able to expand clinician's ability to interpret, adapt, and ultimately act in a complex reality with facets that are too complex to be managed all at the same time and in a holistic manner. With the support of new tools, as healthcare professionals we have the moral obligation to govern this transition, allowing an ethical and sustainable development of these technologies and avoiding being overwhelmed by them. We should welcome this transhumanist tension which does not aim at the replacement of human capabilities or even at the integration of these but rather at the expansion of a "single intelligence".

18.
Trop Parasitol ; 14(1): 2-7, 2024.
Article in English | MEDLINE | ID: mdl-38444798

ABSTRACT

Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control approaches and necessitated exploring innovative strategies. In this direction, artificial intelligence (AI) has emerged as a transformative tool with immense promise in parasitic disease control, offering the potential for enhanced diagnostics, precision drug discovery, predictive modeling, and personalized treatment. Predictive AI algorithms have assisted in understanding parasite transmission patterns and outbreaks by analyzing vast amounts of epidemiological data, environmental factors, and population demographics. This has strengthened public health interventions, resource allocation, and outbreak preparedness strategies, enabling proactive measures to mitigate disease spread. In diagnostics, AI-enabled accurate and rapid identification of parasites by analyzing microscopic images. This capability is particularly valuable in remote regions with limited access to diagnostic facilities. AI-driven computational methods have also assisted in drug discovery for parasitic diseases by identifying novel drug targets and predicting the efficacy and safety of potential drug candidates. This approach has streamlined drug development, leading to more effective and targeted therapies. This article reviews these current developments and their transformative impacts on the health-care sector. It also assessed the hurdles that require attention before these transformations can be realized in real-life scenarios.

19.
Glob Bioeth ; 35(1): 2322208, 2024.
Article in English | MEDLINE | ID: mdl-38476503

ABSTRACT

The application of Artificial Intelligence (AI) in healthcare and epidemiology undoubtedly has many benefits for the population. However, due to its environmental impact, the use of AI can produce social inequalities and long-term environmental damages that may not be thoroughly contemplated. In this paper, we propose to consider the impacts of AI applications in medical care from the One Health paradigm and long-term global health. From health and environmental justice, rather than settling for a short and fleeting green honeymoon between health and sustainability caused by AI, it should aim for a lasting marriage. To this end, we conclude by proposing that, in the upcoming years, it could be valuable and necessary to promote more interconnected health, call for environmental cost transparency, and increase green responsibility. Highlights Using AI in medicine and epidemiology has some benefits in the short term.AI usage may cause social inequalities and environmental damage in the long term.Health justice should be rethought from the One Health perspective.Going beyond anthropocentric and myopic cost-benefit analysis would expand health justice to include an environmental dimension.Greening AI would help to reconcile public and global health measures.

20.
Cureus ; 16(2): e54011, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476814

ABSTRACT

Cardiovascular diseases remain a leading cause of mortality globally, necessitating innovative approaches for early detection and precise diagnostic methodologies. Artificial neural networks (ANNs), inspired by the complexity of the human brain's neural networks, have emerged as powerful tools for transforming the landscape of cardiac diagnostics. ANNs are capable of learning complex patterns from data. In cardiac diagnostics, these networks are employed to analyze intricate cardiovascular data, providing insights into diseases such as coronary artery disease and arrhythmias. From personalized medicine approaches to predictive analytics, ANNs can revolutionize the identification of cardiovascular risks, enabling timely interventions and preventive measures. The integration of ANNs with wearable devices and telemedicine is poised to establish a connected healthcare ecosystem, providing holistic and continuous cardiac monitoring. However, challenges persist, including ethical considerations surrounding patient data and uncertainties in diagnostic outcomes. Looking forward, the prospects of ANNs in cardiac diagnostics are promising. Anticipated technological advancements and collaborative efforts between medical and technological communities are expected to drive innovation, address current challenges, and foster a new era of precision cardiac care.

SELECTION OF CITATIONS
SEARCH DETAIL