Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int Urol Nephrol ; 56(8): 2645-2650, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38494585

ABSTRACT

Acute kidney injury (AKI) is one of the most common clinical critical illnesses, with decreased glomerular filtration rate, retention of nitrogen products, water and electrolyte disorders, and acid-base imbalance as the main clinical manifestations. Presently, there is no effective treatment for acute kidney injury, but the main treatment is to cure the primary disease, remove risk factors, maintain acid-base and water-electrolyte balance, and undergo kidney replacement. However, the mortality rate is still high. Investigations and studies showed that the mortality rate of patients with acute kidney injury in the ICU is 5-80% [1]. In recent years, Chinese medicine has been widely used in acute kidney injury treatment due to its complete dialectical system and rich experience. Astragalus is a commonly used medicine in traditional Chinese medicine to treat acute kidney injury. Astragaloside IV is the main active component of traditional Chinese medicine, Astragalus membranaceus. This article summarizes the relevant studies on treating acute kidney injury with astragaloside IV.


Subject(s)
Acute Kidney Injury , Saponins , Triterpenes , Acute Kidney Injury/drug therapy , Saponins/therapeutic use , Humans , Triterpenes/therapeutic use , Drugs, Chinese Herbal/therapeutic use
2.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38521426

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Saponins , Triterpenes , Humans , Mice , Animals , Cisplatin/toxicity , Molecular Docking Simulation , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Saponins/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/chemistry
3.
Am J Chin Med ; 52(2): 453-469, 2024.
Article in English | MEDLINE | ID: mdl-38490806

ABSTRACT

Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.


Subject(s)
Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Saponins , Triterpenes , Mice , Animals , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Caspase 3/metabolism , Sirtuin 1/metabolism , Gasdermins , Doxorubicin/adverse effects , Caspase 1/metabolism
4.
J Nanobiotechnology ; 22(1): 14, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38166847

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a highly debilitating and fatal chronic lung disease that is difficult to cure clinically. IPF is characterized by a gradual decline in lung function, which leads to respiratory failure and severely affects patient quality of life and survival. Oxidative stress and chronic inflammation are believed to be important pathological mechanisms underlying the onset and progression of IPF, and the vicious cycle of NOX4-derived ROS, NLRP3 inflammasome activation, and p38 MAPK in pulmonary fibrogenesis explains the ineffectiveness of single-target or single-drug interventions. In this study, we combined astragaloside IV (AS-IV) and ligustrazine (LIG) based on the fundamental theory of traditional Chinese medicine (TCM) of "tonifying qi and activating blood" and loaded these drugs onto nanoparticles (AS_LIG@PPGC NPs) that were inhalable and could penetrate the mucosal barrier. Our results suggested that inhalation of AS_LIG@PPGC NPs significantly improved bleomycin-induced lung injury and fibrosis by regulating the NOX4-ROS-p38 MAPK and NOX4-NLRP3 pathways to treat and prevent IPF. This study not only demonstrated the superiority, feasibility, and safety of inhalation therapy for IPF intervention but also confirmed that breaking the vicious cycle of ROS and the NLRP3 inflammasome is a promising strategy for the successful treatment of IPF. Moreover, this successful nanoplatform is a good example of the integration of TCM and modern medicine.


Subject(s)
Idiopathic Pulmonary Fibrosis , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Medicine, Chinese Traditional , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , Quality of Life , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Fibrosis , Inflammation/pathology , p38 Mitogen-Activated Protein Kinases
5.
Phytomedicine ; 125: 155250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295664

ABSTRACT

BACKGROUND: Astragaloside IV (AsIV), a key functioning element of Astragalus membranaceus, has been recognized for its potential cardiovascular protective properties. However, there is a need to elucidate the impacts of AsIV on myocardial hypertrophy under hypoxia conditions and its root mechanisms. PURPOSE: This study scrutinized the influence of AsIV on cardiac injury under hypoxia, with particular emphasis on the role of calpain-1 (CAPN1) in mediating mTOR pathways. METHODS: Hypoxia-triggered cardiac hypertrophy was examined in vivo with CAPN1 knockout and wild-type C57BL/6 mice and in vitro with H9C2 cells. The impacts of AsIV, 3-methyladenine, and CAPN1 inhibition on hypertrophy, autophagy, apoptosis, [Ca2+]i, and CAPN1 and mTOR levels in cardiac tissues and H9C2 cells were investigated. RESULTS: Both AsIV treatment and CAPN1 knockout mitigated hypoxia-induced cardiac hypertrophy, autophagy, and apoptosis in mice and H9C2 cells. Moreover, AsIV, 3-methyladenine, and CAPN1 inhibition augmented p-mTOR level but reduced [Ca2+]i and CAPN1 level. Additionally, lentivirus-mediated CAPN1 overexpression in H9C2 cells exacerbated myocardial hypertrophy, apoptosis, and p-mTOR inhibition under hypoxia. Specifically, AsIV treatment reversed the impacts of increased CAPN1 expression on cardiac injury and the inhibition of p-mTOR. CONCLUSION: These findings suggest that AsIV may alleviate cardiac hypertrophy under hypoxia by attenuating apoptosis and autophagy through CAPN1-mediated mTOR activation.


Subject(s)
Saponins , Triterpenes , Mice , Animals , Calpain/adverse effects , Calpain/metabolism , Mice, Inbred C57BL , Cardiomegaly/chemically induced , Saponins/metabolism , Triterpenes/pharmacology , Triterpenes/metabolism , TOR Serine-Threonine Kinases/metabolism , Hypoxia/drug therapy , Apoptosis , Myocytes, Cardiac
6.
Phytomedicine ; 125: 155346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237511

ABSTRACT

BACKGROUND: Hyperhomocysteine (HHcy) plays an important role in promoting inflammation and cell death of tubular epithelial cells. However, the role of HHcy and Astragaloside IV (AS-IV) in sepsis associated acute kidney injury (S-AKI) remain unclear. PURPOSE: A significant aspect of this study aimed to elucidate the effect of AS-Ⅳ treatment on HHcy-exacerbated S-AKI and reveal its potential mechanism. METHODS: Male C57BL/6 J mice fed with specific diet containing 2% methionine were established as in vivo models, and AS-Ⅳ was orally administrated continuously for 3 weeks, and then LPS (10 mg·kg-1 bodyweight) was given by a single intraperitoneal injection. The renal morphological changes were evaluated by HE and PAS staining. RNA-sequencing analysis was applied to select key signaling. The NRK-52E cells exposed to Hcy or combined with LPS were used as in vitro models. The mRNA and protein expression levels of Gpr97-TPL2 signaling were examined by qRT-PCR and western blotting assays. RESULTS: In vivo, HHcy mice developed more severe renal injury and prevalent tubular inflammation after LPS injection. In vitro, the levels of NGAL, Gpr97 and TPL2 were significantly increased in NRK-52E cells induced by Hcy (1.6 mM) or in combination with LPS. Notably, the effects of Hcy on TPL2 signaling was abolished by transfecting TPL2 siRNA or treating TPL2 inhibitor, without alterations in Gpr97. However, the enhancement of Gpr97-TPL2 signaling induced by Hcy was counteracted by Gpr97 siRNA. Subsequently, our findings demonstrated that AS-Ⅳ treatment can improve renal function in HHcy-exacerbated S-AKI mice. Mechanistically, AS-Ⅳ alleviated renal tubular damage characterized by abnormal increases in KIM-1, NGAL, TPL2, Gpr97, Sema3A and TNF-α, and decreases in survivin in vivo and in vitro mainly through suppressing the activation of Gpr97-TPL2 signaling. CONCLUSION: The present study suggested that HHcy-exacerbated S-AKI was mediated mechanically by activation of Gpr97-TPL2 signaling for the first time. Furthermore, our research also illustrated that AS-Ⅳ protected against HHcy-exacerbated S-AKI by attenuating renal tubular epithelial cells damage through negatively regulating Gpr97-TPL2 signaling, proposing a natural product treatment strategy for HHcy-exacerbated S-AKI.


Subject(s)
Acute Kidney Injury , Saponins , Sepsis , Triterpenes , Male , Mice , Animals , Lipocalin-2/adverse effects , Lipopolysaccharides/adverse effects , Mice, Inbred C57BL , Acute Kidney Injury/chemically induced , Sepsis/complications , Sepsis/drug therapy , RNA, Small Interfering , Inflammation
7.
Phytomedicine ; 123: 155196, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952410

ABSTRACT

BACKGROUND: With the increasing prevalence of hypertension, diabetes, and obesity, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Conventional treatments for kidney diseases have unsatisfactory effects and are associated with adverse reactions. Traditional Chinese medicines have good curative effects and advantages over conventional treatments for preventing and treating kidney diseases. Astragali Radix is a Chinese herbal medicine widely used to treat kidney diseases. PURPOSE: To review the potential applications and molecular mechanisms underlying the renal protective effects of Astragali Radix and its components and to provide direction and reference for new therapeutic strategies and future research and development of Astragali Radix. STUDY DESIGN AND METHODS: PubMed, Google Scholar, and Web of Science were searched using keywords, including "Astragali Radix," "Astragalus," "Astragaloside IV" (AS-IV), "Astragali Radix polysaccharide" (APS), and "kidney diseases." Reports on the effects of Astragali Radix and its components on kidney diseases were identified and reviewed. RESULTS: The main components of Astragali Radix with kidney-protective properties include AS-IV, APS, calycosin, formononetin, and hederagenin. Astragali Radix and its active components have potential pharmacological effects for the treatment of kidney diseases, including acute kidney injury, diabetic nephropathy, hypertensive renal damage, chronic glomerulonephritis, and kidney stones. The pharmacological effects of Astragali Radix are manifested through the inhibition of inflammation, oxidative stress, fibrosis, endoplasmic reticulum stress, apoptosis, and ferroptosis, as well as the regulation of autophagy. CONCLUSION: Astragali Radix is a promising drug candidate for treating kidney diseases. However, current research is limited to animal and cell studies, underscoring the need for further verifications using high-quality clinical data.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Kidney Diseases , Saponins , Triterpenes , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Plant Roots , Inflammation , Kidney Diseases/drug therapy
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1687-1700, 2024 03.
Article in English | MEDLINE | ID: mdl-37712971

ABSTRACT

Fibrotic kidney injury from hepatocarcinogenesis seriously impacts treatment effect. Astragaloside IV (AS-IV), an extract of Astragalus membranaceus, has several pharmacological activities, which are useful in the treatment of edema and fibrosis. Nrf2/HO-1 is a key antioxidant stress pathway and help treatment of kidney injury. Smad3 phosphorylation is implicated in hepatocarcinogenesis. Our previous study clarified that Smad3 is differentially regulated by different phosphorylated forms of Smad3 on hepatocarcinogenesis. Therefore, we investigated the contribution of AS-IV on the therapy of kidney fibrosis from hepatocarcinogenesis. And the focus was on whether the phosphorylation of Smad3 and the regulation of Nrf2/HO-1 pathway were involved during AS-IV therapy and whether there is an effect of Nrf2 knockout on the phosphorylation of Smad3. We performed TGF-ß1 stimulation on HK-2 cells and intervened with AS-IV. Furtherly, we investigated renal injury of AS-IV on Nrf2 knockout mice during hepatocarcinogenesis and its mechanism of action. On the one hand, in vitro results showed that AS-IV reduced the ROS and α-SMA expression of HK-2 by promoting the expression pSmad3C/p21 of and Nrf2/HO-1 and suppressed the expression of pSmad3L/PAI-1. On the other hand, the in vivo results of histopathological features, serological biomarkers, and oxidative damage indicators showed that Nrf2 knockout aggravated renal injury. Besides, Nrf2 deletion decreased the nephroprotective effect of AS-IV by suppressing the pSmad3C/p21 pathway and promoting the pSmad3L/PAI-1 pathway. The experimental results were as we suspected. And we identify for the first time that Nrf2 deficiency increases renal fibrosis from hepatocarcinogenesis and attenuates the therapeutic effects of AS-IV via regulating pSmad3C/3L signal pathway.


Subject(s)
Kidney Diseases , Liver Neoplasms , Saponins , Triterpenes , Mice , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Fibrosis , Kidney/pathology , Kidney Diseases/drug therapy , Kidney Diseases/genetics , Kidney Diseases/metabolism
9.
Fundam Clin Pharmacol ; 38(2): 208-224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37700611

ABSTRACT

BACKGROUND: Astragaloside IV has emerged as a pharmaceutical monomer with great medical applications and potential. Astragaloside IV has many effects such as improving myocardial ischemia, cerebral ischemia-reperfusion injury, anti-inflammatory, analgesic, antiviral, promoting lymphocyte proliferation, and antitumor effects. However, there are few bibliometric studies on astragaloside IV. OBJECTIVES: We aim to visualize the hotspots and trends in astragaloside IV research through bibliometric analysis to further understand the future development of basic and clinical research. Methods The articles and reviews on astragaloside IV were screened from the Web of Science Core Collection, and knowledge maps were generated using CiteSpace software. Bibliometric analysis was performed on 971 articles published from 1998 to 2022. RESULTS: The number of articles on astragaloside IV increased yearly. These publications came from 42 countries/regions, with China being the largest. The primary research institutions were Shanghai University of Traditional Chinese Medicine and Guangzhou University of Traditional Chinese Medicine. Journal of Ethnopharmacology was the most studied journal and co-cited journal. A total of 473 authors were included, among which Hongxin Wang had the highest number of publications and Zhang Wd had the highest total citation frequency. After analysis, the most common keywords are astragaloside IV, expression, and oxidative stress. Cardiovascular disease, cerebral ischemia, cancer, and kidney disease are current and developing research fields. CONCLUSION: This study used bibliometrics and visualization methods to analyze the research hotspots and trends of astragaloside IV. Astragaloside IV on ischemia-reperfusion injury, cancer, and tumor may become the focus of future research.


Subject(s)
Neoplasms , Reperfusion Injury , Saponins , Triterpenes , Humans , China , Bibliometrics , Reperfusion Injury/drug therapy
10.
Biomed Pharmacother ; 170: 116039, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38157643

ABSTRACT

Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.


Subject(s)
Biological Products , Drugs, Chinese Herbal , Kidney Diseases , Humans , Medicine, Chinese Traditional , Biological Products/pharmacology , Biological Products/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Kidney Diseases/drug therapy , Fibrosis , Drug Delivery Systems
11.
Biomed Pharmacother ; 168: 115752, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37875045

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of death and disability globally. A wide range of CVDs have been reported, each of which diverges significantly, exhibiting sophisticated types of pathogenesis (e.g., inflammatory, oxidative stress, and disorders in cardiomyocyte metabolism). Compared with conventional treatments in modern medicine, traditional Chinese medicine (TCM) can exhibit comparative advantages in the treatment of CVDs. TCM can be utilized to develop effective strategies for addressing the challenges of CVD, with fewer side effects and higher therapeutic efficiency. Astragaloside IV (AS-IV) has been confirmed as one of the major active ingredients found in Astragalus membranaceus (a Chinese herbal medicine that has been extensively employed clinically for the treatments of CVDs). Since recent studies have shown that AS-IV in CVD treatments has achieved promising results, the substance has aroused great attention and further discussions in the field. The present review aims to summarize the recent pharmacological advances in employing AS-IV in the treatment of CVDs.


Subject(s)
Cardiovascular Diseases , Drugs, Chinese Herbal , Saponins , Triterpenes , Humans , Medicine, Chinese Traditional , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Cardiovascular Diseases/drug therapy
12.
Phytomedicine ; 121: 155086, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783132

ABSTRACT

BACKGROUND: Astragaloside IV (AS-IV) is the main active component of "Astragalus membranaceus (Fisch.) Bunge, a synonym of Astragalus propinquus Schischkin (Fabaceae)", which demonstrated to be useful for the treatment of intracerebral hemorrhage (ICH). However, due to the low bioavailability and barrier permeability of AS-IV, the gut microbiota may be an important key regulator for AS-IV to work. OBJECTIVE: To explore the influences of gut microbiota on the effects of AS-IV on ICH. METHODS: Mice were randomly divided into five groups: sham, ICH, and AS-IV-treated groups (25 mg/kg, 50 mg/kg, and 100 mg/kg). Behavioral tests, brain histopathology, and immunohistochemistry analysis were used to evaluate the degree of brain injury. Western blot was employed to verify peri­hematoma inflammation. The plasma lipopolysaccharide (LPS) leakage, the fluorescein isothiocyanate-dextran permeability, the colonic histopathology, and immunohistochemistry were detected to evaluate the barrier function of intestinal mucosal. Moreover, 16S rDNA sequencing and metabolomic analysis was applied to screen differential bacteria and metabolites, respectively. The correlation analysis was adopted to determine the potential relationship between differential bacteria and critical metabolites or neurological deficits. RESULTS: AS-IV alleviated neurological deficits, neuronal injury and apoptosis, and blood-brain barrier disruption. This compound reduced tumor necrosis factor (TNF)-α expression, increased arginase (Arg)-1 and interleukin (IL)-33 levels around the hematoma. Next, 16S rRNA sequencing indicated that AS-IV altered the gut microbiota, and inhibited the production of conditional pathogenic bacteria. Metabolomic analysis demonstrated that AS-IV regulated the serum metabolic profiles, especially the aminoacid metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Additionally, AS-IV mitigated intestinal barrier damage and LPS leakage. CONCLUSION: This study provides a new perspective on the use of AS-IV for the treatment of ICH. Among them, gut microbiota and its metabolites may be the key regulator of AS-IV in treating ICH.


Subject(s)
Gastrointestinal Microbiome , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/pharmacology , RNA, Ribosomal, 16S , Cerebral Hemorrhage/drug therapy , Bacteria , Hematoma
13.
Biomed Pharmacother ; 167: 115625, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793276

ABSTRACT

Astragaloside IV (AS-IV), a traditional Chinese medicine, is often used to treat cancer. Colorectal cancer imposes a heavy burden on patients and society. It is essential to update the clinical evidence supporting AS-IV in the treatment of colorectal cancer. The purpose of this review is to systematically evaluate the molecular pathway and safety of AS-IV in colorectal cancer. 7 databases were queried for Jan 2012-Dec 2022. A total of 37 related articles were retrieved. 8 papers were included to evaluate the role of AS-IV in colorectal cancer and make a review. AS-IV plays vital roles in colorectal cancer, especially in the suppression of proliferation, inducing tumor cell apoptosis, increasing immune function and reducing drug resistance. Furthermore, AS-IV has been proved to regulate many signaling pathways, which are usually affected by most cancers. However, a large-scale and well-designed multicenter randomized controlled study ensures that the safety and optimal dose of AS-IV will be determined in the future.


Subject(s)
Colorectal Neoplasms , Saponins , Triterpenes , Humans , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Apoptosis , Colorectal Neoplasms/pathology , Multicenter Studies as Topic
14.
Curr Mol Med ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855351

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic inflammatory condition that affects the articular cartilage. Astragaloside IV (AS-IV) constitutes the primary active component of the Chinese herbal medicine Huangqi (Radix Astragali Mongolici). AS-IV demonstrates anti-inflammatory and anti-apoptotic attributes, exhibiting therapeutic potential across various inflammatory and apoptosis-related disorders. Nevertheless, its pharmaceutical effects in OA are yet to be fully defined. OBJECTIVES: This study aimed to investigate the protective impact of AS-IV on rat chondrocytes treated with IL-1ß and ascertain whether autophagy plays a role in this effect. METHODS: Chondrocytes were isolated and cultivated from the knee joints of neonatal SD mice. The study included the blank control group, the model group, and the AS-IV concentration gradient group (50, 100, 200 µmol/L) to intervene with chondrocytes. The MTT assay was employed to assess cell viability at varying culture periods, enabling the determination of suitable concentration and duration. Subsequently, chondrocytes were treated with the optimal AS-IV concentration and divided into three groups: the model group replicated IL-1ß-induced inflammatory chondrocyte injury, the AS-IV group received a co-culture of AS-IV and IL-1ß, and a blank control group was established. Changes in cell morphology and structure were observed using ghost pen cyclic peptide staining. ELISA was used to measure TNF-α and GAG levels in cell supernatants. RT-qPCR assessed p62 and LC3 mRNA expression, while Western Blot evaluated p62 and LC3Ⅱ/Ⅰ protein expression. RESULTS: AS-IV promoted chondrocyte proliferation and concurrently inhibited cell apoptosis. An optimal AS-IV dose of 200 µmol/L and a suitable reaction time of 48 h were identified. Ghost pen cyclic peptide staining indicated that the model group's cytoskeleton exhibited fusiform changes with reduced immunofluorescence intensity, as opposed to the blank control group. The AS-IV group displayed more polygonal cytoskeletal morphology with increased immunofluorescence intensity. AS-IV reduced TNF-α levels and elevated GAG levels in the culture supernatant. Additionally, AS-IV lowered p62 mRNA and protein expression while increasing LC3 mRNA expression in cultured chondrocytes. CONCLUSION: Our findings suggest that AS-IV mitigates inflammatory chondrocyte injury, safeguarding chondrocytes through a potential autophagy suppression mechanism. These results imply that AS-IV could offer preventive advantages for OA.

15.
Phytomedicine ; 120: 155066, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690229

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a chronic progressive interstitial lung disease characterized by the replacement of lung parenchyma with fibrous scar tissue, usually as the final stage of lung injury like COPD. Astragaloside IV (AST), a bioactive compound found in the Astragalus membranaceus (Fisch.) used in traditional Chinese medicine, has been shown to improve pulmonary function and exhibit anti-pulmonary fibrosis effects. However, the exact molecular mechanisms through which it combats pulmonary fibrosis, especially in COPD, remain unclear. PURPOSE: This study aimed to identify the potential therapeutic target and molecular mechanisms for AST in improving lung injury especially treating COPD type pulmonary fibrosis both in vivo and in vitro. METHODS: Multi lung injury models were established in mice using lipopolysaccharide (LPS), cigarette smoke (CS), or LPS plus CS to simulate the processes of pulmonary fibrosis in COPD. The effect of AST on lung function protection was evaluated, and proteomic and metabolomic analysis were applied to identify the signaling pathway affected by AST and to find potential targets of AST. The interaction between AST and wild-type and mutant RAS proteins was studied. The RAS/RAF/FoxO signaling pathway was stimulated in BEAS-2B cells and in mice lung tissues by LPS plus CS to investigate the anti-pulmonary fibrosis mechanism of AST analyzed by western blotting. The regulatory effects of AST on the RAS/RAF/FoxO pathway dependent on RAS were further confirmed using RAS siRNA. RESULTS: RAS was predicted and identified as the target protein of AST in anti-pulmonary fibrosis in COPD and improving lung function. The administration of AST was observed to impede the conversion of fibroblasts into myofibroblasts, reduce the manifestation of inflammatory factors and extracellular matrix, and hinder the activation of epithelial mesenchymal transition (EMT). Furthermore, AST significantly suppressed the RAS/RAF/FoxO signaling pathway in both in vitro and in vivo settings. CONCLUSION: AST exhibited lung function protection and anti-pulmonary fibrosis effect by inhibiting the GTP-GDP domain of RAS, which downregulated the RAS/RAF/FoxO signaling pathway. This study revealed AST as a natural candidate molecule for the protection of pulmonary fibrosis in COPD.


Subject(s)
Lung Injury , Pulmonary Disease, Chronic Obstructive , Pulmonary Fibrosis , Animals , Mice , Lipopolysaccharides , Proteomics , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Signal Transduction , Pulmonary Disease, Chronic Obstructive/drug therapy , Guanosine Triphosphate
16.
J Chromatogr A ; 1709: 464401, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37741219

ABSTRACT

Vericiguat (VER) is a novel soluble guanylate cyclase stimulator treating symptomatic chronic heart failure (HF), and it is a substrate of both transporters P-glycoprotein and breast cancer resistance protein (BCRP). Astragaloside IV (ASIV) is the main active ingredient in Radix Astragali (Huangqi), a traditional Chinese medicine widely used for HF treatment in China. ASIV's effect on the protein expression of P-glycoprotein and BCRP has been observed, its impact on VER metabolism remain uncertain. In the present study, male Sprague-Dawley rats were administered with 20 mg/kg ASIV and 1 mg/kg VER to study their pharmacokinetics. Blood samples were subject to liquid-liquid extraction, and riociguat was employed as the internal standard (IS). The analytical method involved a C18 column (XSelect® HSS T3 column, 2.1 × 100 mm, 2.5 µm) with a mobile phase of 0.1% formic acid and acetonitrile for gradient elution. The flow rate of the mobile phase was set at 0.2 mL/min, and 5 µL of the sample was used for analysis. The positive ion multi-response monitoring mode was utilized with a transition of m/z 427.4→109.1 for VER and m/z 423.3→109.1 for the IS. The method exhibited good linearity within the concentration range of 0.1 to 300 ng/mL (r = 0.9987), and all the validation processes were conducted in accordance with the requirements of biological analysis. The pharmacokinetic results revealed that ASIV did not significantly alter the main parameters of VER, except for Cmax, which decreased by 33.2% (P < 0.05). Overall, our study successfully established a selective, sensitive and repeatable ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis for detecting VER in rat plasma.

17.
Phytomedicine ; 121: 155116, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776619

ABSTRACT

BACKGROUND: Colitis-associated colorectal cancer (CAC) is a severe complication of inflammatory bowel disease (IBD), resulting from long-term inflammation in the intestines. The primary cause of CAC is the imbalance of oxidative metabolism in intestinal cells, triggered by excessive reactive oxygen (ROS) and nitrogen (NO) species production due to prolonged intestinal inflammation. This imbalance leads to genomic instability caused by DNA damage, eventually resulting in the development of intestinal cancer. Previous studies have demonstrated that astragaloside IV is effective in treating dextran sulfate sodium salt (DSS)-induced colitis, but there is currently no relevant research on its efficacy in treating CAC. METHODS: To investigate the effect of astragaloside IV against CAC and the underlying mechanism, C57 mice were treated with (20, 40, 80 mg/kg) astragaloside IV while CAC was induced by intraperitoneal injection of 10 mg/kg azoxymethane (AOM) and ad libitum consumption of 2% dextran sulfate sodium salt (DSS). We re-verified the activating effects of astragaloside IV on PPARγ signaling in IEC-6 cells, which were reversed by GW9662 (the PPARγ inhibitor). RESULTS: Our results showed that astragaloside IV significantly improved AOM/DSS-induced CAC mice by inhibiting colonic shortening, preventing intestinal mucosal damage, reducing the number of tumors and, the expression of Ki67 protein. In addition, astragaloside IV could activate PPARγ signaling, which not only promoted the expression of Nrf2 and HO-1, restored the level of SOD, CAT and GSH, but also inhibited the expression of iNOS and reduced the production of NO in the intestine and IEC-6 cells. And this effect could be reversed by GW9662 in vitro. Astragaloside IV thus decreased the level of ROS and NO in the intestinal tract of mice, as well as reduced the damage of DNA, and therefore inhibited the occurrence of CAC. CONCLUSION: Astragaloside IV can activate PPARγ signaling in intestinal epithelial cells and reduces DNA damage caused by intestinal inflammation, thereby inhibiting colon tumourigenesis. The novelty of this study is to use PPARγ as the target to inhibit DNA damage to prevent the occurrence of CAC.


Subject(s)
Colitis , PPAR gamma , Animals , Mice , Azoxymethane/toxicity , Dextran Sulfate/adverse effects , Reactive Oxygen Species , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/metabolism , Carcinogenesis , Cell Transformation, Neoplastic , Mice, Inbred C57BL , Disease Models, Animal
18.
Molecules ; 28(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630371

ABSTRACT

Astragaloside IV (AS-IV) is one of the main active components extracted from the Chinese medicinal herb Astragali and serves as a marker for assessing the herb's quality. AS-IV is a tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and exhibits various biological activities. This review article summarizes the chemical structure of AS-IV, its pharmacological effects, mechanism of action, applications, future prospects, potential weaknesses, and other unexplored biological activities, aiming at an overall analysis. Papers were retrieved from online electronic databases, such as PubMed, Web of Science, and CNKI, and data from studies conducted over the last 10 years on the pharmacological effects of AS-IV as well as its impact were collated. This review focuses on the pharmacological action of AS-IV, such as its anti-inflammatory effect, including suppressing inflammatory factors, increasing T and B lymphocyte proliferation, and inhibiting neutrophil adhesion-associated molecules; antioxidative stress, including scavenging reactive oxygen species, cellular scorching, and regulating mitochondrial gene mutations; neuroprotective effects, antifibrotic effects, and antitumor effects.


Subject(s)
Astragalus Plant , Saponins , Triterpenes , Saponins/pharmacology , Triterpenes/pharmacology , Cell Proliferation
19.
Turk J Biol ; 47(1): 61-73, 2023.
Article in English | MEDLINE | ID: mdl-37529109

ABSTRACT

From Astragalus membranaceus (Fisch.) Bge.var. mongholicus (Bge.) Hsiao, astragaloside IV (AS-IV), a saponin can be purified and is considered traditional Chinese medicine. The purpose of this study was to evaluate the AS-IV-mediated mechanism on chronic glomerulonephritis (CGN). A cationic bovine serum albumin-induced CGN rat model was established and 10, 15, or 20 mg/kg of AS-IV was administered to measure renal function and inflammatory infiltration. Influences of AS-IV on proliferation, cell cycle, and inflammation of LPS-induced rat mesangial cells (RMCs) were determined. The results demonstrated that AS-IV alleviated renal dysfunction, renal lesions, and inflammation in CGN rats. AS-IV prolonged the G0-G1 phase, shortened the S phase, and inhibited cell proliferation and inflammation in RMCs. AS-IV can promote miR-181d-5p expression to inhibit CSF1. miR-181d-5p promotion or CSF1 suppression could further enhance the therapeutic role of AS-IV in CGN rats, while miR-181d-5p silencing or CSF1 overexpression abolished the effect of AS-IV. In conclusion, AS-IV by mediating the miR-181d-5p/CSF1 axis protects against CGN.

20.
Drug Des Devel Ther ; 17: 1963-1978, 2023.
Article in English | MEDLINE | ID: mdl-37426627

ABSTRACT

Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.


Subject(s)
Drugs, Chinese Herbal , Respiratory Tract Diseases , Saponins , Triterpenes , Humans , Oxidative Stress , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Respiratory Tract Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL