Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Plant Physiol Biochem ; 210: 108624, 2024 May.
Article in English | MEDLINE | ID: mdl-38636254

ABSTRACT

Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.


Subject(s)
Antioxidants , Chromium , Klebsiella , Mustard Plant , Zinc Oxide , Mustard Plant/drug effects , Mustard Plant/microbiology , Mustard Plant/metabolism , Chromium/toxicity , Chromium/metabolism , Antioxidants/metabolism , Klebsiella/metabolism , Klebsiella/drug effects , Zinc Oxide/pharmacology , Adsorption , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Soil Pollutants/toxicity
2.
Molecules ; 28(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138452

ABSTRACT

Repeated exposure to pathogens leads to evolutionary selection of adaptive traits. Many species transfer immunological memory to their offspring to counteract future immune challenges. Transfer factors such as those found in the colostrum are among the many mechanisms where transfer of immunologic memory from one generation to the next can be achieved for an enhanced immune response. Here, a library of 100 plants with high protein contents was screened to find plant-based proteins that behave like a transfer factor moiety to boost human immunity. Aqueous extracts from candidate plants were tested in a human peripheral blood mononuclear cell (PBMC) cytotoxicity assay using human cancerous lymphoblast cells-with K562 cells as a target and natural killer cells as an effector. Plant extracts that caused PBMCs to exhibit enhanced killing beyond the capability of the colostrum-based transfer factor were considered hits. Primary screening yielded an 11% hit rate. The protein contents of these hits were tested via a Bradford assay and Coomassie-stained SDS-PAGE, where three extracts were confirmed to have high protein contents. Plants with high protein contents underwent C18 column fractionation using methanol gradients followed by membrane ultrafiltration to isolate protein fractions with molecular weights of <3 kDa, 3-30 kDa, and >30 kDa. It was found that the 3-30 kDa and >30 kDa fractions had high activity in the PBMC cytotoxicity assay. The 3-30 kDa ultrafiltrates from the top two hits, seeds from Raphanus sativus and Brassica juncea, were then selected for protein identification by mass spectrometry. The majority of the proteins in the fractions were found to be seed storage proteins, with a low abundance of proteins involved in plant defense and stress response. These findings suggest that Raphanus sativus or Brassica juncea extracts could be considered for further characterization and immune functional exploration with a possibility of supplemental use to bolster recipients' immune response.


Subject(s)
Plant Proteins , Raphanus , Humans , Plant Proteins/pharmacology , Plant Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Transfer Factor , Plants/metabolism , Mustard Plant/metabolism
3.
Nutrients ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630688

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is mainly characterized by excessive fat accumulation in the liver. It spans a spectrum of diseases from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Brassica juncea is rich in glucosinolates and has been proven to possess many potential pharmacological properties, including hypoglycemic, anti-oxidation, anti-inflammatory, and anti-carcinogenic activities. This study aims to investigate whether whole-plant Brassica juncea (WBJ) and its glucosinolates extracts (BGE) have hepatoprotective effects against a high-fat diet (HFD)-induced NAFLD and further explore the mechanism underlying this process in vivo and in vitro. WBJ treatment significantly reduced body fat, dyslipidemia, hepatic steatosis, liver injury, and inflammation; WBJ treatment also reversed the antioxidant enzyme activity to attenuate oxidative stress in HFD-fed rat liver. Moreover, WBJ and BGE enhanced the activation of AMPK to reduce SREBPs, fatty acid synthase, and HMG-CoA reductase but increased the expression of CPT-I and PPARα to improve hepatic steatosis. In addition, WBJ and BGE could ameliorate NAFLD by inhibiting TNF-α and NF-κB. Based on the above results, this study demonstrates that WBJ and BGE ameliorate HFD-induced hepatic steatosis and liver injury. Therefore, these treatments could represent an unprecedented hope toward improved strategies for NAFLD.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Rats , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Glucosinolates/pharmacology , Mustard Plant , Diet, High-Fat/adverse effects , Antioxidants/pharmacology , Plant Extracts/pharmacology
4.
Environ Pollut ; 320: 120760, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36464116

ABSTRACT

Chlorpyrifos (CP) is a commonly used organophosphorous pesticide that is frequently utilised in the agricultural industry because of its great efficiency and inexpensive cost. The focus of the present study was to assess the impact of CP toxicity on Brassica juncea L. and to unravel the ameliorative potential of phytohormone, 24-epibrassinolide (EBL) mediated plant-microbe (Pseudomonas aeruginosa (B1), Burkholderia gladioli (B2)) interaction in B. juncea L. The maximum significant increment in the total chlorophyll, carotenoids, xanthophyll, anthocyanin and flavonoid content with EBL and B2 treatment in CP stressed B. juncea seedlings on spectrophotometric analysis were observed. Autofluorescence imaging of photosynthetic pigments i.e. chlorophyll, carotenoids, and total phenols with confocal microscopy showed maximum fluorescence with EBL and B2. Furthermore, when compared to CP stressed seedlings, scanning electron microscopy (SEM) study of the abaxial surface of leaves revealed a recovery in stomatal opening. The supplementation of EBL and PGPR (plant growth promoting rhizobacteria) improved the level of psb A (D1 subunit PSII) and psb B (CP 47 subunit of PSII) genes expression. The expression analysis of chalcone synthase (CHS), Phenylalanine ammonialyase (PAL), Phyotene synthase (PSY) with RT-PCR system showed up-regulation in the expression when supplemented with EBL and PGPR. As a result, the current study suggests that EBL and PGPR together, can reduce CP-induced toxicity in B. juncea seedlings and recovering the seedling biomass.


Subject(s)
Chlorpyrifos , Chlorpyrifos/toxicity , Chlorpyrifos/metabolism , Mustard Plant/metabolism , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Seedlings
5.
Plant Dis ; 107(5): 1491-1498, 2023 May.
Article in English | MEDLINE | ID: mdl-36320132

ABSTRACT

The pale cyst nematode Globodera pallida is a highly specialized, economically important pest for potato production. The specialized hatching requirements, ability to adapt, and the loss of effective control strategies such as methyl bromide fumigation increase the challenge to eradicate G. pallida in Idaho. Without a suitable host, this nematode can remain dormant as encysted eggs in soil for up to 20 years. In this study, we first demonstrated that Sinapis alba seed meal extract (SME) or 4-hydroxybenzyl alcohol (HBA), under laboratory and greenhouse conditions, enhances G. pallida egg hatch rate when exposed to potato root diffusate (PRD). This hatch rate enhancement in the presence of PRD is speculated to be due to an increase in egg-shell permeability. We then tested the efficacy of (i) Solanum sisymbriifolium following prior treatment with S. alba SME (0 and 4.48 t/ha) or HBA (0 and 0.12 t/ha) and (ii) Brassica juncea SME (0, 0.14, 0.56, and 1.12 t/ha) following HBA treatment (0 and 4.48 t/ha) on egg viability, hatch rate, and reproduction of G. pallida encysted eggs. S. sisymbriifolium alone reduced the number of encysted eggs compared to the nontreated control by up to 67%, indicating that this trap crop triggered G. pallida eggs to hatch. When combined with S. alba SME or HBA, S. sisymbriifolium significantly reduced egg count, hatch rate, and viability more than S. sisymbriifolium alone. The combination of S. sisymbriifolium with HBA or S. alba SME eliminated G. pallida reproduction on the susceptible potato. All the tested rates of B. juncea SME alone or with HBA reduced egg hatch rate, viability, and reproduction compared to the nontreated control. Combining HBA and B. juncea SME further significantly reduced egg hatch rate, viability, and reproduction than those rates of B. juncea SME alone.


Subject(s)
Solanum tuberosum , Solanum , Mustard Plant , Sinapis , Plant Extracts/pharmacology , Seeds
6.
Appl Biochem Biotechnol ; 195(1): 693-721, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35986841

ABSTRACT

Agricultural productivity is negatively impacted by drought stress. Brassica is an important oilseed crop, and its productivity is often limited by drought. Biostimulants are known for their role in plant growth promotion, increased yields, and tolerance to environmental stresses. Silicon in its soluble form of orthosilicic acid (OSA) has been established to alleviate deteriorative effects of drought. Seaweed extract (SWE) also positively influence plant survival and provide dehydration tolerance under stressed environments. The present study was conducted to evaluate the efficacy of OSA and SWE on mitigating adverse effects of drought stress on Brassica genotype RH-725. Foliar application of OSA (2 ml/L and 4 ml/L) and SWE of Ascophyllum nodosum (3 ml/L and 4 ml/L) in vegetative stages in Brassica variety RH 725 under irrigated and rainfed condition revealed an increase in photosynthetic rate, stomatal conductance, transpirational rate, relative water content, water potential, osmotic potential, chlorophyll fluorescence, chlorophyll stability index, total soluble sugars, total protein content, and antioxidant enzyme activity; and a decrease in canopy temperature depression, proline, glycine-betaine, H2O2, and MDA content. Application of 2 ml/L OSA and 3 ml/L SWE at vegetative stage presented superior morpho-physiological and biochemical characteristics and higher yields. The findings of the present study will contribute to developing a sustainable cropping system by harnessing the benefits of OSA and seaweed extract as stress mitigators.


Subject(s)
Droughts , Mustard Plant , Seaweed , Antioxidants/metabolism , Chlorophyll/metabolism , Hydrogen Peroxide , Mustard Plant/physiology , Plant Extracts/pharmacology , Seaweed/chemistry , Water , Silicic Acid
7.
Appl Biochem Biotechnol ; 194(7): 2872-2881, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35286592

ABSTRACT

Euphorbia hirta is used traditionally for medicinal purposes. A vast stretch of land in West Bengal is arsenic affected, where agricultural activities present the hazard of arsenic entering the food chain putting the entire community at health risk. The present work tried to study if these areas could be safely utilized to grow this medicinal plant. In this study, the medicinal plant Euphorbia hirta and a known hyperaccumulator Brassica juncea were exposed to a high level of arsenic, and after a certain span of time, arsenic translocation in both the plants was checked. The data revealed that Euphorbia hirta is not a hyperaccumulator and does not translocate high levels of arsenic to the aerial parts of the plant as compared to Brassica juncea. It was also found that the biochemical and genetic effects of arsenic stress were enhanced significantly more in Brassica juncea than in Euphorbia hirta. Thus, the present study points to the growth potential of the common medicinal weed Euphorbia hirta in the arsenic-affected areas without being a cause of human health concern.


Subject(s)
Arsenic , Euphorbia , Plants, Medicinal , Arsenic/toxicity , Humans , India , Mustard Plant , Plant Extracts/pharmacology
8.
Toxins (Basel) ; 14(2)2022 01 21.
Article in English | MEDLINE | ID: mdl-35202108

ABSTRACT

Corn (Zea mays) is a worldwide crop subjected to infection by toxigenic fungi such as Fusarium verticillioides during the pre-harvest stage. Fusarium contamination can lead to the synthesis of highly toxic mycotoxins, such as Fumonisin B1 (FB1) and Fumonisin B2 (FB2), which compromises human and animal health. The work aimed to study the antifungal properties of fermented yellow and oriental mustard extracts using nine lactic acid bacteria (LAB) in vitro. Moreover, a chemical characterization of the main phenolic compounds and organic acids were carried out in the extracts. The results highlighted that the yellow mustard, fermented by Lactiplantibacillus plantarum strains, avoided the growth of Fusarium spp. in vitro, showing Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) values, ranging from 7.8 to 15.6 g/L and 15.6 to 31.3 g/L, respectively. Then, the lyophilized yellow mustard fermented extract by L. plantarum TR71 was applied through spray-on corn ears contaminated with F. verticillioides to study the antimycotoxigenic activity. After 14 days of incubation, the control contained 14.71 mg/kg of FB1, while the treatment reduced the content to 1.09 mg/kg (92.6% reduction). Moreover, no FB2 was observed in the treated samples. The chemical characterization showed that lactic acid, 3-phenyllactic acid, and benzoic acid were the antifungal metabolites quantified in higher concentrations in the yellow mustard fermented extract with L. plantarum TR71. The results obtained confirmed the potential application of fermented mustard extracts as a solution to reduce the incidence of mycotoxins in corn ears.


Subject(s)
Fumonisins/chemistry , Fusarium/metabolism , Lactobacillaceae/metabolism , Mustard Plant/chemistry , Plant Extracts/chemistry , Fermentation , Food Contamination , Plant Extracts/metabolism , Zea mays/chemistry
9.
Environ Sci Pollut Res Int ; 29(32): 49029-49049, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35212900

ABSTRACT

This study aimed to test the efficiency of ethylene (Eth; 200 µL L-1 ethephon) in presence or absence of nitrogen (N; 80 mg N kg-1 soil) in protecting photosynthetic apparatus from copper (Cu; 100 mg Cu kg-1 soil) stress in mustard (Brassica juncea L.) and to elucidate the physio-biochemical modulation for Eth plus N-induced Cu tolerance. Elevated Cu-accrued reductions in photosynthesis and growth were accompanied by significantly higher Cu accumulation in leaves and oxidative stress with reduced assimilation of N and sulfur (S). Ethylene in coordination with N considerably reduced Cu accumulation, lowered lipid peroxidation, lignin accumulation, and contents of reactive oxygen species (hydrogen peroxide, H2O2, and superoxide anion, O2•-), and mitigated the negative effect of Cu on N and S assimilation, accumulation of non-protein thiols and phytochelatins, enzymatic, and non-enzymatic antioxidants (activity of ascorbate peroxidase, APX, and glutathione reductase, GR; content of reduced glutathione, GSH, and ascorbate, AsA), cell viability, photosynthesis, and growth. Overall, the effect of ethylene-nitrogen synergism was evident on prominently mitigating Cu stress and protecting photosynthesis. The approach of supplementing ethylene with N may be used as a potential tool to restrain Cu stress, and protect photosynthesis and growth of mustard plants.


Subject(s)
Antioxidants , Mustard Plant , Antioxidants/metabolism , Copper/metabolism , Ethylenes/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Nitrogen/metabolism , Oxidative Stress , Photosynthesis , Soil
10.
J Biomol Struct Dyn ; 40(18): 8155-8168, 2022 11.
Article in English | MEDLINE | ID: mdl-33792526

ABSTRACT

Brassica juncea (BJ) is a familiar edible crop, which has been used as a dietary ingredient and to prepare anti-inflammatory/anti-arthritic formulations in Ayurveda. But, the scientific validation or confirmation of its therapeutic properties is very limited. This study was performed to determine the efficiency of BJ leaves for the treatment of Rheumatoid arthritis using in vivo and in silico systems. Standard in vitro procedures was followed to study the total phenolic, flavonoid contents and free radical scavenging ability of the extracts of BJ. The effective extract was screened and the presence of bioactive chemicals was studied using HPLC. Further, the possible therapeutic actions of the BJ active principles against the disease targets were studied using PPI networking and docking analysis. IL2RA, IL18 and VEGFA are found to be the potential RA target and the compounds detected from BJ extract have shown great binding efficiency towards the target from molecular docking study. The resulting complexes were then subject to 100 ns molecular dynamics simulation studies with the GROMACS package to analyze the stability of docked protein-ligand complexes and to assess the fluctuation and conformational changes during protein-ligand interactions. To confirm the anti-arthritic activity of BJ, the extract was tested in CFA-induced arthritic Wistar rats. The test groups administered with BJ extract showed retrieval of altered hematological parameters and substantial recovery from inflammation and degeneration of rat hind paw.Communicated by Ramaswamy H. Sarma.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Interleukin-2 Receptor alpha Subunit/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Flavonoids/pharmacology , Free Radicals , Interleukin-18/therapeutic use , Ligands , Molecular Docking Simulation , Mustard Plant , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Rats, Wistar
11.
Molecules ; 26(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916405

ABSTRACT

The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score -912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.


Subject(s)
2S Albumins, Plant/chemistry , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Moringa oleifera/chemistry , Mustard Plant/chemistry , 2S Albumins, Plant/isolation & purification , 2S Albumins, Plant/pharmacology , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amidohydrolases/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Binding Sites , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Leaves/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs
12.
Arch Razi Inst ; 76(4): 925-934, 2021 10.
Article in English | MEDLINE | ID: mdl-35096328

ABSTRACT

Brassica juncea (B. juncea) is an erect, and often an unbranched plant that belongs to the family Brassicaceae. The plant's seeds have been used in many countries as a folk remedy to treat considerable common and chronic diseases. The current study aimed to investigate the possible effects of B. juncea seed extract supplementation in the drinking water as an alternative antibiotic growth promoter on poultry production. In a completely randomized design, 308 unsexed Ross broilers were allocated into 4 treatments with4 replicates, and each replicate was run on10 birds. Aqueous B. juncea seeds extract (MSE) was administered to drinking water at levels of 0, 3, 5, and 7 ml/liter to T1, T2, T3, and T4, respectively, from day 1to day 35. No significant effects were reported regarding jejunum villi height and villi thickness (P≥0.05). However, the ratio of villus height to crypt depth was increased (P<0.05), and the crypt depth was reduced (P<0.05) in birds that had been fed B. juncea seeds extract, compared to control treatment (T1) at 35 day. The B. juncea seeds extract (MSE) at the level of 7 ml (T4) yielded the highest serum total protein, phosphorus, and calcium. The T2, T3, and T4 had the lowest values of cholesterol (160, 180mg /L) and the highest value (P<0.05) of alkaline phosphatase. On day 35, the birds receiving different levels of B. juncea seed extract had lower total aerobic bacteria counts in the ileum, compared to birds fed with control treatment. The administration of B. juncea seeds extract at 3, 5, and 7 ml levels can be added to drinking water to improve gut morphology, blood biochemical traits, and intestinal bacterial load.


Subject(s)
Bacteriology , Drinking Water , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens , Diet/veterinary , Dietary Supplements/analysis , Drinking Water/metabolism , Mustard Plant , Plant Extracts/metabolism , Plant Extracts/pharmacology , Seeds
13.
Nutrients ; 12(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256231

ABSTRACT

Mustard leaf (Brassica juncea var. crispifolia L. H. Bailey) has been reported to have psychological properties such as anti-depressant activities. However, studies on chronic stress and depression caused by restraint have not been conducted. Therefore, this study aimed to evaluate the effects of a mustard leaf (ML) extract on chronic restraint stress (CRS) in mice. Male mice were subjected to a CRS protocol for a period of four weeks to induce stress. The results showed that the ML extract (100 and 500 mg/kg/perorally administered for four weeks) significantly decreased corticosterone levels and increased neurotransmitters levels in stressed mice. Apoptosis by CRS exposure was induced by Bcl-2 and Bax expression regulation and was suppressed by reducing caspase-3 and poly (ADP-ribose) polymerase expression after treatment with the ML extract. Our results confirmed that apoptosis was regulated by increased expression of brain-derived neurotrophic factor (BDNF). Additionally, cytokine levels were regulated by the ML extract. In conclusion, our results showed that the ML extract relieved stress effects by regulating hormones and neurotransmitters in CRS mice, BDNF expression, and apoptosis in the brain. Thus, it can be suggested that the studied ML extract is an agonist that can help relieve stress and depression.


Subject(s)
Apoptosis/drug effects , Corticosterone/blood , Mustard Plant , Neurotransmitter Agents/blood , Plant Extracts/pharmacology , Restraint, Physical/psychology , Stress, Psychological/drug therapy , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Plant Extracts/blood , Stress, Psychological/blood
14.
Biomolecules ; 10(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33317112

ABSTRACT

Detoxification is one of the main vital tasks performed by the liver. The purpose of this study was to investigate whether mustard in its normal or nanoparticles could confer a protective/therapeutic effect against TAA-induced acute liver failure in experimental animal models. Mustard ethanolic extract was analyzed by HPLC/MS. To induce liver failure, male rats were injected with 350 mg/kg bw TAA IP, then treated orally with a dose of 100 mg/kg for 15 d of mustard extract and its nanoform before and following induction. The levels of serum liver functions, total cholesterol (TCHo), total glyceride (TG), total bilirubin (TBIL), hepatic malonaldhyde (MDA) and nitric oxide (NO),glutathione (GSH), sodium oxide dismutase (SOD), as well as tumor necrosis factor (TNF-α,) and interleukin 6 (IL-6), were estimated. DNA genotoxicity and hepatic pathology, and immunohistologic (IHC) changes were assayed. The antioxidant content of Phenolic acids, flavonoids in mustard ethanolic extract substantially decreased the levels of ALT, AST, ALP and rehabilitated the histopathological alterations. In addition, nanoforms of mustard ethanol extract have notably increased the levels of GSH, SOD and significantly reduced the levels of MDA. The expression levels of TNF-α and IL-6 in serum and tissue were markedly downregulated. DNA genotoxicity was significantly reversed. Mustard introduced a protective and medicinal effect against TAA in both its forms.


Subject(s)
Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Metal Nanoparticles/administration & dosage , Mustard Plant/chemistry , Silver/pharmacology , Administration, Oral , Animals , Antioxidants/chemistry , Bilirubin/blood , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cholesterol/blood , DNA Damage , Drug Administration Schedule , Glutathione/agonists , Glutathione/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Malondialdehyde/antagonists & inhibitors , Malondialdehyde/metabolism , Metal Nanoparticles/chemistry , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Rats , Rats, Wistar , Silver/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Thioacetamide/administration & dosage , Thioacetamide/antagonists & inhibitors , Triglycerides/blood , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
15.
J Agric Food Chem ; 68(50): 14950-14960, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33227196

ABSTRACT

Fragrant Brassica species seed oils (FBO) produced in China are mainly obtained from rapeseed (Brassica napus: B. napus) and mustard seeds (Brassica juncea: B. juncea). The characterization and differences of aroma profiles between those two species remain unclear. In this study, the volatile compounds in FBOs were systemically extracted by headspace solid-phase microextraction and solvent-assisted flavor evaporation combined with ultrasound and identified by comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry (GC×GC-TOFMS) and gas chromatography-olfactometry (GC-O). Ninety-three odorants were identified as aroma-active compounds with flavor dilution (FD) factors ranging from 1 to 6561. Moreover, 63 key compounds exhibited their odor activity values (OAVs) to be greater than 1. The oils of the two species were successfully recombinated with their key odorants. B. juncea oils presented stronger pungent-like, pickled-like, and fishy like notes compared to B. napus oils. The key odor differences were primarily attributed to the concentration of 3-butenenitrile, 4-(methylsulfanyl)butanenitrile, 5-(methylsulfanyl)pentanenitrile, 3-isothiocyanato-1-propene, 3-methyl-3-butenenitrile, isothiocyanatocyclopropane, (methylsulfanyl)acetonitrile, dimethyl sulfide, dimethyl trisulfide, and 3-(methyldisulfanyl)-1-propene. This work provides a guide for the selection of raw materials and odor markers in fragrant B. napus and B. juncea oils.


Subject(s)
Brassica napus/chemistry , Mustard Plant/chemistry , Odorants/analysis , Plant Oils/chemistry , Volatile Organic Compounds/chemistry , Adult , Female , Flavoring Agents/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Male , Olfactometry , Smell , Young Adult
16.
Molecules ; 25(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228167

ABSTRACT

Indian mustard or Brassica juncea (B. juncea) is an oilseed plant used in many types of food (as mustard or IV range salad). It also has non-food uses (e.g., as green manure), and is a good model for phytoremediation of metals and pesticides. In recent years, it gained special attention due to its biological compounds and potential beneficial effects on human health. In this study, different tissues, namely leaves, stems, roots, and flowers of three accessions of B. juncea: ISCI 99 (Sample A), ISCI Top (Sample B), and "Broad-leaf" (Sample C) were analyzed by HPLC-PDA/ESI-MS/MS. Most polyphenols identified were bound to sugars and phenolic acids. Among the three cultivars, Sample A flowers turned were the richest ones, and the most abundant bioactive identified was represented by Isorhamnetin 3,7-diglucoside (683.62 µg/100 mg dry weight (DW) in Sample A, 433.65 µg/100 mg DW in Sample B, and 644.43 µg/100 mg DW in Sample C). In addition, the most complex samples, viz. leaves were analyzed by GC-FID/MS. The major volatile constituents of B. juncea L. leaves extract in the three cultivars were benzenepropanenitrile (34.94% in Sample B, 8.16% in Sample A, 6.24% in Sample C), followed by benzofuranone (8.54% in Sample A, 6.32% in Sample C, 3.64% in Sample B), and phytone (3.77% in Sample B, 2.85% in Sample A, 1.01% in Sample C). The overall evaluation of different tissues from three B. juncea accessions, through chemical analysis of the volatile and non-volatile compounds, can be advantageously taken into consideration for future use as dietary supplements and nutraceuticals in food matrices.


Subject(s)
Ecotype , Mustard Plant/chemistry , Organ Specificity , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Flavonoids/analysis , Flowers/metabolism , Metabolome , Polyphenols/analysis , Seeds/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
17.
Molecules ; 25(5)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182961

ABSTRACT

Plant-based foods are characterized by significant amounts of bioactive molecules with desirable health benefits beyond basic nutrition. The Brassicaceae (Cruciferae) family consists of 350 genera; among them, Brassica is the most important one, which includes some crops and species of great worldwide economic importance. In this work, the metabolite content of three different cultivars of Brassica juncea, namely ISCI Top, "Broad-leaf," and ISCI 99, was determined using comprehensive two-dimensional liquid chromatography coupled with a photodiode array and mass spectrometry detection. The analyses were carried out under reversed-phase conditions in both dimensions, using a combination of a 250-mm microbore cyano column and a 50-mm RP-Amide column in the first and second dimension (2D), respectively. A multi (three-step) segmented-in-fraction gradient for the 2D separation was advantageously investigated here for the first time, leading to the identification of 37 metabolites. In terms of resolving power, orthogonality values ranged from 62% to 69%, whereas the corrected peak capacity values were the highest for B. juncea ISCI Top (639), followed by B. juncea "Broad-leaf" (502). Regarding quantification, B. juncea cv. "Broad-leaf" presented the highest flavonoid content (1962.61 mg/kg) followed by B. juncea cv. ISCI Top (1002.03 mg/kg) and B. juncea cv. ISCI 99 (211.37 mg/kg).


Subject(s)
Metabolome , Mustard Plant/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Chromatography, Liquid , Mass Spectrometry , Mustard Plant/classification , Mustard Plant/metabolism
18.
Chemosphere ; 242: 125112, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31669993

ABSTRACT

This investigation was made to examine the role of indole-3-acetic acid (IAA), gibberellin A3 (GA3), 6-Benzylaminopurine (6-BA), and 24-epibrassinolide (EBL) in improving stress tolerance and phytoremediation of the cadmium (Cd) and uranium (U) by mustard (Brassica juncea L.). The optimum concentrations of IAA, GA3, 6-BA, and EBL were determined based on plant biomass production, metal uptake, translocation, and removal efficiency. The biomass and total chlorophyll content decreased under Cd and U stress. Nevertheless, the application of IAA, GA3, and 6-BA significantly (p < 0.05) increased the growth and total chlorophyll content of mustard. The malondialdehyde (MDA) and H2O2 content of mustard were enhanced under Cd and U stress, but they were significantly (p < 0.05) decreased in plant growth regulators (PGRs) treatments (except for EBL). PGRs treatments increased activities of antioxidant enzymes such as superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, thus reducing the oxidative stress. Furthermore, the shoot uptake of Cd and U of IAA and EBL treatments was significantly (p < 0.05) higher than that of other treatments. IAA and EBL also have more significant effects on the translocation and remediation of Cd and U compared to GA3 and 6-BA. The removal efficiency of Cd and U reached the maximum in the 500 mg L-1 IAA treatment, which was 330.77% and 118.61% greater than that in the control (CK), respectively. These results suggested that PGRs could improve the stress tolerance and efficiency of phytoremediation using B. juncea in Cd- and U- contaminated soils.


Subject(s)
Biodegradation, Environmental , Cadmium/metabolism , Mustard Plant/metabolism , Plant Growth Regulators , Soil Pollutants/metabolism , Uranium/metabolism , Antioxidants , Ascorbate Peroxidases , Brassinosteroids , Cadmium/analysis , Catalase , Hydrogen Peroxide , Malondialdehyde , Peroxidase , Peroxidases , Soil , Soil Pollutants/analysis , Steroids, Heterocyclic , Superoxide Dismutase
19.
Sci Total Environ ; 655: 663-675, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30476847

ABSTRACT

The antioxidant defense system of Brassica juncea under Cd stress was examined on supplementation of earthworms in the rhizosphere at different concentrations of Cd (0.50, 0.75, 1.00 and 1.25 mM i.e. 56, 84, 112 and 140 mg kg-1 respectively). Seedlings were raised in small pots containing soil spiked with Cd and earthworms under controlled conditions for 15 days. Improved Cd accumulation, as well as enhanced plant dry weight and metal tolerance were observed following the addition of earthworms. Earthworm supplementation reduced reactive oxygen species (ROS) generation by 7.3% for hydrogen peroxide (H2O2), 7.1% for superoxide anion (O2-), and 8.4% for malondialdehyde (MDA) in plants treated with 1.25 mM (140 mg kg-1) Cd. Confocal microscopy revealed improved cell viability and reduced H2O2 content due to enhanced antioxidative activity. Activity and expression levels of genes coding for antioxidative enzymes (superoxide dismutase; SOD, catalase; CAT, guaicol peroxidase; POD, glutathione reductase; GR, and glutathione-S-transferase; GST) were higher in plants raised in soils inoculated with earthworms, with expression of SOD increasing by 58.8%, CAT by 75%, POD by 183%, GR by 106.6%, and GST by 11.8%. Moreover, plant pigment (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids) concentrations increased by 8%, 9.1%, 9.1%, and 7.7% respectively, in plants grown in soils supplemented with earthworms. The results of our study suggest that the addition of earthworms to soil increases antioxidative enzyme activities, gene expression in plants, and ROS inhibition, which enhances tolerance to Cd during the phytoextraction process.


Subject(s)
Cadmium/metabolism , Mustard Plant/metabolism , Oligochaeta/metabolism , Reactive Oxygen Species/metabolism , Soil Pollutants/metabolism , Animals , Antioxidants/metabolism , Biodegradation, Environmental , Cadmium/toxicity , Cell Survival/drug effects , Gene Expression/drug effects , Mustard Plant/drug effects , Mustard Plant/genetics , Mustard Plant/growth & development , Oxidative Stress/drug effects , Pigments, Biological/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Soil/chemistry , Soil Pollutants/toxicity
20.
Int. j. morphol ; 37(1): 237-240, 2019. tab, graf
Article in English | LILACS | ID: biblio-990033

ABSTRACT

SUMMARY: Brassica juncea (Indian mustard) seeds are consumed in treatment of high blood pressure, headache and prevention of heart disease. The aim of the present study was to investigate the effects of methanol extract of Brassica juncea seeds [BJME] on the heart and liver of adult Albino Wistar rats. A total of 24 albino rats of both sexes were divided into 6 groups [I - VI] of 4 rats per group. Groups I to IV received graded doses of the methanol extract by oral gavage while groups V and VI (controls) received 2 ml/kg body weight of 3 % Tween 80 and water respectively via oral gavage once daily. Treatment lasted for four weeks and the serum levels of aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were estimated. The animals were sacrificed and the heart and liver tissues were excised for further histological processing for light microscopy. There was significant increase in AST and ALT levels following BJME treatment when compared to the controls. ALP activity did not differ significantly among the treatment and control groups. Histopathological changes consistent with toxic injury were observed in the heart and liver tissues of BJME- treated rats. In conclusion, the results of this study show that sub-acute administration of methanol seed extract of Brassica juncea can exert cardiotoxic and hepatotoxic effects in rats.


RESUMEN: Las semillas de Brassica juncea (mostaza india) se consumen en el tratamiento de la hipertensión arterial, el dolor de cabeza y la prevención de enfermedades del corazón. El objetivo del presente estudio fue investigar los efectos del extracto de metanol de semillas de Brassica juncea [BJME] en el corazón y el hígado de ratas Albino Wistar adultas. Un total de 24 ratas albinas de ambos sexos se dividieron en 6 grupos [I - VI] de 4 ratas por grupo. Los grupos I a IV recibieron dosis del extracto de metanol por sonda oral progresivamente, mientras que los grupos V y VI (control) recibieron 2 ml / kg de peso corporal de 3 % de 80 y agua, respectivamente, por sonda oral una vez al día. El tratamiento duró cuatro semanas y se estimaronlos niveles séricos de aspartato transaminasa (AST), alanina transaminasa (ALT) y fosfatasa alcalina (ALP). Los animales se sacrificaron y fueron analizados los tejidos del corazón y el hígado, para un procesamiento histológico adicional con microscopía óptica. Hubo un aumento significativo en los niveles de AST y ALT después del tratamiento con BJME en comparación con los controles. La actividad de ALP no difirió significativamente entre los grupos de tratamiento y control. Se observaron cambios histopatológicos compatibles con lesiones tóxicas en los tejidos del corazón y el hígado de ratas tratadas con BJME. En conclusión, los resultados de este estudio muestran que la administración subaguda de extracto de semilla de metanol de Brassica juncea puede ejercer efectos cardiotóxicos y hepatotóxicos en ratas.


Subject(s)
Animals , Rats , Plant Extracts/pharmacology , Methanol/pharmacology , Heart/drug effects , Liver/drug effects , Mustard Plant/chemistry , Aspartate Aminotransferases/analysis , Seeds , Time Factors , Plant Extracts/administration & dosage , Rats, Wistar , Alanine Transaminase/analysis , Methanol/administration & dosage , Alkaline Phosphatase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL