Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Braz. j. biol ; 84: e255529, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1364534

ABSTRACT

Reports from popular medicine usually act as a basis for the development of new drugs from natural compounds with therapeutic actions for serious diseases and prevalence such as cancer. Bromelia antiacantha Bertol. is a species of the Bromeliaceae family, considered an unconventional food plant, found in the south and midwest regions of Brazil. Despite the high nutritional content and pharmacological potential of its fruits, few scientific studies report its biological actions. Thus, this study evaluates the phytochemical profile of aqueous and ethanol extracts obtained from B. antiacantha fruits, as well as their possible antioxidant, antitumor, and cytotoxic activities. The aqueous extract exhibited phenolic compounds and flavonoids, while ethanol extracts indicated the presence of flavonoids and coumarin in their composition, regardless of the region of collection. The ethanolic extract demonstrated a more promising antioxidant effect than the aqueous extract and also induced a significant inhibition in the viability of human cervical cancer cells of the SiHa strain. In addition, treatment with both extracts did not alter the viability of non-tumor cells of the immortalized human keratinocyte lineage (HaCaT). These results bring new data about extracts obtained from a native plant, edible and traditionally used in popular medicine, opening new perspectives for its possible therapeutic application.


Relatos da medicina popular costumam atuar como referencial para o desenvolvimento de novos fármacos a partir de moléculas naturais com ações terapêuticas para doenças de alta gravidade e prevalência como o câncer. Bromelia antiacantha Bertol. é uma espécie da família Bromeliaceae, considerada uma planta alimentícia não convencional (PANC), encontrada nas regiões sul e centro-oeste do Brasil. Apesar do alto teor nutritivo e potencial farmacológico de seus frutos, poucos estudos científicos relatam suas ações biológicas. Desta forma, este estudo avalia o perfil fitoquímico de extratos aquoso e etanólico obtidos de frutos de B. antiacantha, bem como a sua possível ação antioxidante, antitumoral e citotóxica. O extrato aquoso apresentou compostos fenólicos e flavonoides, enquanto os extratos etanólicos apontam a presença de flavonóides e cumarina em sua composição, independente da região de coleta. O extrato etanólico demonstrou efeito antioxidante mais promissor do que o extrato aquoso e também induziu uma inibição significativa na viabilidade de células humanas de câncer cervical da linhagem SiHa. Além disso, o tratamento com ambos extratos não alterou a viabilidade de células não tumorais da linhagem de queratinócitos humanos imortalizados (HaCaT). Estes dados trazem novas informações sobre extratos obtidos de uma espécie vegetal nativa, comestível e já utilizada tradicionalmente, mas abrindo novas perspectivas quanto a possíveis aplicações terapêuticas.


Subject(s)
Flavonoids , Uterine Cervical Neoplasms , Bromeliaceae , Bromelia , Therapeutic Uses , Phytochemicals , Phytotherapy
2.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469377

ABSTRACT

Abstract Reports from popular medicine usually act as a basis for the development of new drugs from natural compounds with therapeutic actions for serious diseases and prevalence such as cancer. Bromelia antiacantha Bertol. is a species of the Bromeliaceae family, considered an unconventional food plant, found in the south and midwest regions of Brazil. Despite the high nutritional content and pharmacological potential of its fruits, few scientific studies report its biological actions. Thus, this study evaluates the phytochemical profile of aqueous and ethanol extracts obtained from B. antiacantha fruits, as well as their possible antioxidant, antitumor, and cytotoxic activities. The aqueous extract exhibited phenolic compounds and flavonoids, while ethanol extracts indicated the presence of flavonoids and coumarin in their composition, regardless of the region of collection. The ethanolic extract demonstrated a more promising antioxidant effect than the aqueous extract and also induced a significant inhibition in the viability of human cervical cancer cells of the SiHa strain. In addition, treatment with both extracts did not alter the viability of non-tumor cells of the immortalized human keratinocyte lineage (HaCaT). These results bring new data about extracts obtained from a native plant, edible and traditionally used in popular medicine, opening new perspectives for its possible therapeutic application.


Resumo Relatos da medicina popular costumam atuar como referencial para o desenvolvimento de novos fármacos a partir de moléculas naturais com ações terapêuticas para doenças de alta gravidade e prevalência como o câncer. Bromelia antiacantha Bertol. é uma espécie da família Bromeliaceae, considerada uma planta alimentícia não convencional (PANC), encontrada nas regiões sul e centro-oeste do Brasil. Apesar do alto teor nutritivo e potencial farmacológico de seus frutos, poucos estudos científicos relatam suas ações biológicas. Desta forma, este estudo avalia o perfil fitoquímico de extratos aquoso e etanólico obtidos de frutos de B. antiacantha, bem como a sua possível ação antioxidante, antitumoral e citotóxica. O extrato aquoso apresentou compostos fenólicos e flavonoides, enquanto os extratos etanólicos apontam a presença de flavonóides e cumarina em sua composição, independente da região de coleta. O extrato etanólico demonstrou efeito antioxidante mais promissor do que o extrato aquoso e também induziu uma inibição significativa na viabilidade de células humanas de câncer cervical da linhagem SiHa. Além disso, o tratamento com ambos extratos não alterou a viabilidade de células não tumorais da linhagem de queratinócitos humanos imortalizados (HaCaT). Estes dados trazem novas informações sobre extratos obtidos de uma espécie vegetal nativa, comestível e já utilizada tradicionalmente, mas abrindo novas perspectivas quanto a possíveis aplicações terapêuticas.

3.
J Ethnopharmacol ; 304: 116083, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36584921

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fu Fang Gang Liu (FFGL) is an effective formula for treating wart proliferation caused by human papillomavirus (HPV) infection and has the potential to treat HPV-related cancers. However, scientific evidence of its anti-tumor activity against cervical cancer, the most common cancer caused by HPV, is lacking. AIM OF THE STUDY: To clarify the anti-tumor effect of an FFGL aqueous extract on human cervical cancer and its possible mechanism of cell cycle arrest in HeLa cells. MATERIALS AND METHODS: The anti-proliferative effect of FFGL on cervical cancer cells was assessed using the cell counting kit-8 assay. The proportion of apoptotic cells, cell cycle distribution, and cell division rate were determined using flow cytometry. Quantitative proteomics was used to identify differentially expressed proteins after FFGL treatment, and bioinformatics analysis was used to identify key nodal proteins affected by FFGL. Immunofluorescence and western blot analyses were used to explore changes in the expression of related proteins in the cell cycle and DNA damage pathways to elucidate the potential mechanism of action of FFGL against HeLa cell proliferation. RESULTS: FFGL inhibited cervical cancer cell proliferation and caused cell cycle arrest. According to quantitative proteomics, CyclinB1 may play an important role in the anti-proliferative effect of FFGL on HeLa cells. Additional experiments showed that FFGL aqueous extract caused ATM-mediated DNA damage, further phosphorylated CHK2, led to the inactivation of Cdc25C, inhibited the activity of the CDK1/CyclinB1 complex, and resulted in cell cycle arrest. CONCLUSIONS: FFGL can inhibit cervical cancer cell proliferation. Furthermore, it can increase CDK1 phosphorylation, block the cell cycle by causing DNA damage, and inhibit HeLa cell proliferation.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , HeLa Cells , Uterine Cervical Neoplasms/pathology , Cell Proliferation , DNA , Apoptosis
4.
Nat Prod Res ; 36(16): 4052-4060, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34343036

ABSTRACT

Previous results indicated that the methanol extract of Gardenia thunbergia has antiplasmodial activity but no compounds have ever been isolated from the plant. Therefore, this study aimed to investigate the phytochemical and antiplasmodial properties of the plant. The methanol leaf extract of G. thunbergia inhibited Plasmodium falciparum at 50 µg/mL (> 80% inhibition) and was not cytotoxic against HeLa cells. Chromatographic purification of the extract afforded a new saponin and eight other known compounds. The saponin and two flavonoid glycosides displayed non-selective antiplasmodial activity at 50 µg/mL but the activities were diminished at 10 µg/mL. The presence of the isolated compounds in the leaf extract of G. thunbergia could account for the folkloric use of the plant in treating malaria.


Subject(s)
Acanthaceae , Antimalarials , Gardenia , Saponins , Antimalarials/pharmacology , HeLa Cells , Humans , Methanol , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Leaves , Plasmodium falciparum
5.
Int J Nanomedicine ; 15: 4523-4540, 2020.
Article in English | MEDLINE | ID: mdl-32606692

ABSTRACT

PURPOSE: Selenium nanoparticles (SeNP) have several applications in the field of biotechnology, including their use as anti-cancer drugs. The purpose of the present study is to analyze the efficacy of green synthesis on the preparation of SeNP and its effect on their anti-cancer properties. METHODS: A bacterial strain isolated from a freshwater source was shown to efficiently synthesize SeNP with potential therapeutic properties. The quality and stability of the NP were studied by scanning electron microscopy, X-ray diffraction, zeta-potential and FTIR analysis. A cost-effective medium formulation from biowaste having 6% banana peel extract enriched with 0.25 mM tryptophan was used to synthesize the NP. The NP after optimization was used to analyze their anti-tumor and anti-angiogenic activity. For this purpose, first, the cytotoxicity of the NP against cancer cells was analyzed by MTT assay and then chorioallantoic membrane assay was performed to assess anti-angiogenic activity. Further, cell migration assay and clonogenic inhibition assay were performed to test the anti-tumor properties of SeNP. To assess the cytotoxicity of SeNP on healthy RBC, hemolysis assay was performed. RESULTS: The strain identified as Pseudomonas stutzeri (MH191156) produced phenazine carboxylic acid, which aids the conversion of Se oxyanions to reduced NP state, resulting in particles in the size range of 75 nm to 200 nm with improved stability and quality of SeNP, as observed by zeta (ξ) potential of the particles which was found to be -46.2 mV. Cytotoxicity of the SeNP was observed even at low concentrations such as 5 µg/mL against cervical cancer cell line, ie, HeLa cells. Further, neovascularization was inhibited by upto 30 % in CAMs of eggs coinoculated with SeNp when compared with untreated controls, indicating significant anti-angiogenic activity of SeNP. The NP also inhibited the invasiveness of HeLa cells as observed by decreased cell migration and clonogenic proliferation. These observations indicate significant anti-tumor and anti-angiogenic activity of the SeNP in cervical cancer cells. CONCLUSION: P. stutzeri (MH191156) is an efficient source of Se NP production with potential anti-angiogenic and anti-tumor properties, particularly against cervical cancer cells.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Metal Nanoparticles/chemistry , Pseudomonas stutzeri/metabolism , Selenium/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chick Embryo , Costs and Cost Analysis , Female , HeLa Cells , Hemolysis/drug effects , Humans , Metal Nanoparticles/ultrastructure , Phenazines/chemistry , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Static Electricity , Uterine Cervical Neoplasms/blood supply , Uterine Cervical Neoplasms/pathology , X-Ray Diffraction
6.
Integr Cancer Ther ; 17(1): 80-91, 2018 03.
Article in English | MEDLINE | ID: mdl-28008780

ABSTRACT

Carnosine has been demonstrated to play an antitumorigenic role in certain types of cancer. However, its underlying mechanism is unclear. In this study, the roles of carnosine in cell proliferation and its underlying mechanism were investigated in the cultured human cervical gland carcinoma cells HeLa and cervical squamous carcinoma cells SiHa. The results showed that carnosine exerted a significant inhibitory effect on the proliferation of HeLa cells, whereas its inhibitory action on the proliferation of SiHa cells was much weaker. Carnosine decreased the ATP content through inhibiting both mitochondrial respiration and glycolysis pathways in cultured HeLa cells but not SiHa cells. Carnosine reduced the activities of isocitrate dehydrogenase and malate dehydrogenase in TCA (tricarboxylic acid) cycle and the activities of mitochondrial electron transport chain complex I, II, III, and IV in HeLa cells but not SiHa cells. Carnosine also decreased the mRNA and protein expression levels of ClpP, which plays a key role in maintaining the mitochondrial function in HeLa cells. In addition, carnosine induced G1 arrest by inhibiting the G1-S phase transition in both HeLa and SiHa cells. Taken together, these findings suggest that carnosine has a strong inhibitory action on the proliferation of human cervical gland carcinoma cells rather than cervical squamous carcinoma cells. Mitochondrial bioenergetics and glycolysis pathways and cell cycle may be involved in the carnosine action on the cell proliferation in cultured human cervical gland carcinoma cells HeLa.


Subject(s)
Antineoplastic Agents/pharmacology , Carnosine/pharmacology , Cell Cycle/drug effects , Mitochondria/metabolism , Uterine Cervical Neoplasms/metabolism , Apoptosis/drug effects , Cell Cycle/physiology , Cell Proliferation/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Female , Glycolysis/drug effects , Glycolysis/physiology , HeLa Cells/drug effects , HeLa Cells/metabolism , HeLa Cells/pathology , HeLa Cells/physiology , Humans , Mitochondria/drug effects , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/physiopathology
7.
Int J Mol Sci ; 19(1)2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29267213

ABSTRACT

Praeruptorin A (PA) is a pyranocumarin present in the dried root of Peucedanumpraeruptorum Dunn that has anticancer effects against several types of cells. However, the effect of PA on human cervical cancer cells is unknown. Our results indicate that PA significantly inhibited cell proliferation, colony formation, migration, invasion, and wound closure of HeLa and SiHa cells, induced cell cycle arrest at G0/G1 phase, upregulated Rb, p16, p21 and p27 proteins and downregulated cyclin D1 and S-phase kinase-associated protein 2 (Skp2) proteins. PA also significantly reduced expression of matrix metalloproteinase-2 (MMP-2) and increased expression of tissue inhibitor of metalloproteinase-2 (TIMP-2). In addition, PA suppressed ERK1/2 activation and increased the effect of PD98059 (a specific MEK1/2 inhibitor) in downregulation of MMP-2 and upregulation of TIMP-2. PA treatment inhibited the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on upregulation of ERK1/2 activation, MMP-2 expression, cellular migration, and invasion of HeLa cells. Our findings are the first to demonstrate the activity of PA against cervical cancer cells, and suggest this agent has promise as a therapeutic agent in treatment of human cervical cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Coumarins/pharmacology , Drugs, Chinese Herbal/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Uterine Cervical Neoplasms/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Flavonoids/pharmacology , HeLa Cells , Humans , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Tissue Inhibitor of Metalloproteinase-2/metabolism
8.
Biomed Mater Eng ; 24(6): 1991-8, 2014.
Article in English | MEDLINE | ID: mdl-25226895

ABSTRACT

20(s)-ginsenoside Rg3 is extracted from traditional Chinese medicine, red ginseng. However, due to its poor aqueous solubility and low oral bioavailability, the use of 20(s)-Rg3 is limited. This study aimed to explore a method of preparing nano-sized 20(s)-ginsenoside Rg3 particle named 20(s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres (20(s)-Rg3/HSAMNP) to change dosage form to improve its aqueous solubility and bioavailability. 20(s)-Rg3/HSAMNP were prepared by the desolvation-crosslinking method. The character of 20(s)-Rg3/HSAMNP was detected. An antiproliferative effect and cell apoptosis rates of 20(s)-Rg3/HSAMNP on human cervical cancer cells were determined by the MTT assay and flow cytometry, respectively. TEM analysis showed that 20(s)-Rg3/HSAMNP were approximately spherical and uniform in size. Thermodynamic testing showed that the corresponding magnetic fluid of a specific concentration rosed to a steady temperature of 42-65○C. Iron content was approximately 3 mg/mL. Drug encapsulation efficiency was approximately 70%. The potential of 20(s)-Rg3/HSAMNP combined with magnetic hyperthermia therapy to inhibit cell growth and induce apoptosis was much more prominent than that of the other groups. A new dosage form of 20(s)-Rg3 was prepared, which effectively induced apoptosis in HeLa cervical cancer cells in vitro when combined with hyperthermia.


Subject(s)
Cell Survival/drug effects , Ginsenosides/administration & dosage , Magnetite Nanoparticles/chemistry , Nanocapsules/chemistry , Nanospheres/chemistry , Serum Albumin/chemistry , Animals , Ginsenosides/chemistry , HeLa Cells , Humans , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/ultrastructure , Nanocapsules/administration & dosage , Nanocapsules/ultrastructure , Nanospheres/administration & dosage , Nanospheres/ultrastructure , Treatment Outcome
9.
Chem Biol Interact ; 205(3): 188-97, 2013 Oct 05.
Article in English | MEDLINE | ID: mdl-23867903

ABSTRACT

The frequent development of multidrug resistance (MDR) hampers the efficacy of available anticancer drugs in treating cervical cancer. In this study, we aimed to use formononetin (7-hydroxy-4'-methoxyisoflavone), a potential herbal isoflavone, to intensify the chemosensitivity of human cervical cancer HeLa cells to epirubicin, an anticancer drug. The reactive oxygen species (ROS) levels were correlated with MDR modulation mechanisms, including the transporter inhibition and apoptosis induction. Our results revealed that formononetin significantly enhanced the cytotoxicity of epirubicin. Co-incubation of epirubicin with formononetin increased the ROS levels, including hydrogen peroxide and superoxide free radicals. Epirubicin alone markedly increased the mRNA expression of MDR1, MDR-associated protein (MRP) 1, and MRP2. In contrast, formononetin alone or combined treatment decreased the mRNA expression of MRP1 and MRP2. This result indicates that efflux transporter-mediated epirubicin resistance is inhibited at different degrees by the addition of formononetin. This isoflavone significantly intensified epirubicin uptake into HeLa cells. Apoptosis was induced by formononetin and/or epirubicin, as signified by nuclear DNA fragmentation, chromatin condensation, increased sub-G1 and G2/M phases. The cotreatment triggered the mitochondrial apoptotic pathway indicated by increased Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, and significant activation of caspase-9 and -3. In addition, extrinsic/caspases-8 apoptotic pathway was also induced by the cotreatment. N-acetyl cysteine abrogated these events induced by formononetin, supporting the involvement of ROS in the MDR reversal mechanism. This study pioneered in demonstrating that formononetin may potentiate the cytotoxicity of epirubicin in HeLa cells through the ROS-mediated MRP inhibition and concurrent activation of the mitochondrial and death receptor pathways of apoptosis. Hence, the circumvention of pump and non-pump resistance using formononetin and epirubicin may pave the way for a powerful chemotherapeutic regimen for treating human cervical cancer.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Epirubicin/pharmacology , Isoflavones/pharmacology , Phytoestrogens/pharmacology , Uterine Cervical Neoplasms/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antibiotics, Antineoplastic/administration & dosage , Caspases/genetics , Caspases/metabolism , Cell Survival/drug effects , Drug Synergism , Epirubicin/administration & dosage , Female , Flow Cytometry , HeLa Cells , Humans , Isoflavones/administration & dosage , Membrane Potential, Mitochondrial , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Phytoestrogens/administration & dosage , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Neoplasm/chemistry , RNA, Neoplasm/genetics , Real-Time Polymerase Chain Reaction , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL