Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 234: 123457, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36716843

ABSTRACT

The discovery of environmentally friendly enzymes that can convert inexpensive and abundant citrus peel pectin into high value-added product is a potential avenue for the citrus peel application. In this study, a novel PL10-family pectate lyase (pelA) was characterized from marine bacterium Echinicola pacifica. PelA was a Ca2+ dependent pectate lyase whose activity was highest at pH 8 and 40 °C. It was capable of degrading polygalacturonic acid (PGA) and citrus peel pectin (CPP), but not apple peel pectin. Notably, PelA hydrolyzed PGA to high molecular weight polysaccharide (average molecular weight 111.4 kDa). Moreover, PelA was also able to degrade CPP from nine distinct citrus species into polysaccharides (average molecular weight ranging from 84.7 to 539.2 kDa) that showed antimicrobial activity against Staphylococcus epidermidis (88.8 %), Bacillus subtilis (99.8 %), Staphylococcus aureus (92.1 %), Escherichia coli (100.0 %) and Klebsiella pneumoniae (86.4 %). Considering the high market value of pectin in the food industry, PelA's capacity to convert citrus pectin into high molecular weight polysaccharides lays a foundation for its applications.


Subject(s)
Anti-Infective Agents , Citrus , Pectins/metabolism , Molecular Weight , Citrus/metabolism , Polysaccharide-Lyases/chemistry
2.
Food Chem ; 386: 132683, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35364490

ABSTRACT

Pectins obtained from citrus peel of different cultivars and growth regions were compared based on physicochemical properties and antioxidant activity in vitro. The physicochemical features were elucidated using Fourier transform infrared (FT-IR), molecular weight distribution, monosaccharide composition, thermal behaviors and flow behaviors. Results showed that the different cultivars and growing areas have significant effects on the properties of citrus peel pectins (CPPs). Citrus peel pectins extracted by acetic acid were highly heterogeneous polysaccharides with broad molecular weight distributions and had high proportions of the RG-I domain. Among the 10 kinds of citrus peel pectins, Shatangju (CPP-6) and Xuecheng (CPP-7) own superior antioxidant biological activity and Dahongpao (CPP-3) and Buzhihuo (CPP-9) had excellent functional properties (thermal stability and viscosity). According to the correlation analysis, molecular weight, galacturonic acid content and degree of methyl-esterification were beneficial to increase the thermal stability and viscosity of citrus peel pectins, while the rhamnose content, rhamnogalacturonan I region and lower molecular weight can improve citrus peel pectins antioxidant activity. Our findings suggest that CPP-6 and CPP-7 may be useful as a potential natural antioxidant in pharmaceutical and cosmetic industries. Meanwhile, CPP-3 has great application potential in high temperature food and CPP-9 can be used as a thickener or stabilizer in the food industry.


Subject(s)
Antioxidants , Citrus , Antioxidants/chemistry , Citrus/chemistry , Esterification , Pectins/chemistry , Spectroscopy, Fourier Transform Infrared
3.
J Agric Food Chem ; 64(39): 7377-7384, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27622937

ABSTRACT

In this study, a novel hydrogel (BSA-pectin hydrogel, BPH) was prepared via a self-assembly method by using the natural polymers of bovine serum albumin (BSA) and citrus peel pectin (pectin). The rheological properties and gel conformational structures were determined and showed that electrostatic and covalent interactions between BSA and pectin were the main mechanisms for the formation of BPH. The morphological characteristics of BPH included a stable and solid three-dimensional network structure with a narrow size distribution (polydispersity index <0.06). BPH was used as a delivery system to load the functional agent vitamin C (Vc). The encapsulation efficiency (EE) and release properties of Vc from BPH were also investigated. The results revealed that the EE of Vc into BPH was approximately 65.31%, and the in vitro Vc release from BPH was governed by two distinct stages (i.e., burst release and sustained release) in different pH solutions, with release mechanisms involving diffusion, swelling, and erosion. Meanwhile, the stability results showed that BPH was a stable system with an enhanced Vc retention (73.95%) after 10 weeks of storage. Thus, this three-dimensional network system of BPH may be a potential delivery system to improve the stability and bioavailability of functional agents in both food and non-food fields.


Subject(s)
Ascorbic Acid/chemistry , Citrus/chemistry , Hydrogels/chemical synthesis , Pectins/chemistry , Serum Albumin, Bovine/chemistry , Drug Carriers/chemistry , Drug Stability , Food Technology , Fruit/chemistry , Particle Size , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL