Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Vet Sci ; 11(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38668427

ABSTRACT

Probiotics are safe, inexpensive, and effective feed additives, and Clostridium butyricum (CB) has been reported to regulate bone health in addition to having conventional probiotic effects. The bone health of laying hens is closely related to their production performance. Here, we investigated the effects of CB supplementation on the bone health and performance of laying hens. We added CB to the feed of green-shell laying hens, Luhua laying hens, and Hy-line Brown laying hens and examined changes in body weight, feed intake, egg production performance, and egg quality to determine the impact of CB on production performance. The impact of CB on the bones of laying hens was determined by analyzing the bone index, bone bending strength, bone calcium and phosphorus content, and bone mineral density. The study found that CB had little effect on the body weight and feed intake of laying hens. Feed additions of 108 and 109 CFU/kg CB can significantly increase the tibia index and bone mineral density of four-week-old green-shell laying hens. Feed additions of 107 and 108 CFU/kg CB can significantly increase the average egg weight, eggshell weight, and tibia index of 26-week-old Luhua laying hens, but 107 CFU/kg CB will reduce the egg production rate. Adding 108 CFU/kg CB to feed can significantly increase the average egg weight, eggshell weight, and tibia bending strength of 40-week-old Hy-line Brown laying hens. In summary, adding 108 CFU/kg CB is beneficial to the bone and production health of laying hens.

2.
BMC Microbiol ; 24(1): 105, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561662

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by an elevated level of blood glucose due to the absence of insulin secretion, ineffectiveness, or lack of uptake of secreted insulin in the body. The improperly diagnosed and poorly managed DM can cause severe damage to organs in the body like the nerves, eyes, heart, and kidneys. This study was aimed at investigating the effect of Clostridium butyricum (probiotic) with magnesium supplementation to evaluate the effect on gut microbial dysbiosis and blood glucose levels. In the laboratory, 6-8 weeks old 24 male albino rats weighing 200-250 g were given free access to water and food. Diabetes was induced using streptozotocin (60 mg/kg) in overnight fasted rats. Diabetic rats were randomly divided into four groups (n = 6, 6 replicates in each group). Metformin (100 mg/kg/day) with a standard basal diet was provided to control group (G0), Clostridium butyricum (1.5 × 105 CFU/day) with standard basal diet was provided to treatment group (G1), magnesium (500 mg/kg/day) was provided to group (G2). Clostridium butyricum (1.5 × 105 CFU/day) and magnesium (300 mg/kg/day) in combination with a standard basal diet was provided to group (G3). Blood Glucose, Magnesium blood test and microbial assay were done. Random blood glucose levels were monitored twice a week for 21 days and were represented as mean of each week. The results conclude that Clostridium butyricum (1.5 × 105 CFU) is very effective in balancing random blood glucose levels from 206.6 ± 67.7 to 85.1 ± 3.8 (p = 0.006) compared to other groups (p > 0.005). The results of stool analysis showed that Clostridium butyricum as probiotic restores microbial dysbiosis as evident by the 105 CFU Clostridium butyricum load in G1, which was higher than G0, G2 and G3 which were 103 and 104 CFU respectively. The findings of this study conclude that Clostridium butyricum supplementation improved blood glucose levels and intestinal bacterial load in type II diabetes mellitus.


Subject(s)
Clostridium butyricum , Diabetes Mellitus, Type 2 , Probiotics , Male , Rats , Animals , Clostridium butyricum/physiology , Blood Glucose , Magnesium , Dysbiosis , Probiotics/pharmacology
3.
J Transl Med ; 22(1): 222, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429821

ABSTRACT

BACKGROUND: Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS: The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS: The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION: We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , Microbiota , Humans , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Fatty Acids, Volatile/metabolism , Colonoscopy , Butyric Acid/pharmacology , Butyric Acid/metabolism
4.
Front Immunol ; 14: 1190592, 2023.
Article in English | MEDLINE | ID: mdl-37711631

ABSTRACT

The effects of dietary supplementation of Clostridium butyricum (CB) on growth performance, serum biochemistry, antioxidant activity, mRNA levels of immune-related genes and resistance to hypoxia stress were studied in largemouth bass. Feed with CB0 (control, 0 CFU/kg), CB1 (4.3×108 CFU/kg), CB2 (7.5×108 CFU/kg), CB3 (1.5×109 CFU/kg) and CB4 (3.2×109 CFU/kg) CB for 56 days, and then a 3 h hypoxic stress experiment was performed. The results showed that dietary CB significantly increased the WGR (weight gain rate), SGR (specific growth rate), PDR (protein deposition rate) and ISI (Intestosomatic index) of largemouth bass (P<0.05). Hepatic GH (growth hormone)/IGF-1 (insulin-like growth factor-1) gene expression was significantly upregulated in the CB3 and CB4 groups compared with the CB0 group (P<0.05), while the FC (feed conversion) was significantly decreased (P<0.05). Serum TP (total protein) and GLU (glucose) levels were significantly higher in the CB4 group than in the CB0 group (P<0.05), while the contents of serum AST (aspartate transaminase), ALT (alanine transaminase), AKP (alkline phosphatase) and UN (urea nitrogen) in CB4 were significantly lower than those in CB0 (P<0.05). T-AOC (total antioxidant capacity), SOD (superoxide dismutase), CAT (catalase), POD (peroxidase) and GSH-Px (glutathione peroxidase) activities were significantly higher in CB3 and CB4 groups than in CB0 group (P<0. 05). The liver MDA (malondialdehyde) content of CB1, CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expressions of IL-1ß (interleukin 1ß), TNF-α (tumor necrosis factor α) and TLR22 (toll-like receptor-22) genes in CB2, CB3 and CB4 groups were significantly lower than those in CB0 group (P<0.05). The relative expression of IL-8 (malondialdehyde) and MyD88 (Myeloid differentiation factor 88) genes in the CB4 group was significantly lower than that in the CB0 group (P<0.05). The liver LZM (lysozyme) content of CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expression of IL-10 (interleukin 10) and TGF-ß (transforming growth factor ß) genes in the CB4 group was significantly higher than that in the CB0 group (P<0.05). Under hypoxic stress for 3 h, the CMR of CB0 group was significantly higher than that of CB1, CB2, CB3 and CB4 groups (P<0.05). Dietary CB can improve the growth performance and resistance to hypoxic stress of largemouth bass by regulating the expression of GH/IGF-1 gene and inflammatory factors and inhibiting TLR22/MyD88 signaling pathway.


Subject(s)
Bass , Clostridium butyricum , Animals , Antioxidants/pharmacology , Insulin-Like Growth Factor I , Myeloid Differentiation Factor 88 , Tumor Necrosis Factor-alpha , Adaptor Proteins, Signal Transducing , Dietary Supplements
5.
Phytomedicine ; 120: 155056, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37703619

ABSTRACT

BACKGROUND: Increasing evidence suggests that repairing the damaged intestinal epithelial barrier and restoring its function is the key to solving the problem of prolonged ulcerative colitis. Previous studies have shown that paeonol (pae) can alleviate colitis by down-regulating inflammatory pathways. In addition, pae also has a certain effect on regulating intestinal flora. However, it remains unclear whether pae can play a role in repairing the intestinal barrier and whether there is a relationship between the therapeutic effect and the gut microbiota. PURPOSES: The aim of this study is to investigate the effect of pae on intestinal barrier repair in UC mice and how the gut microbiota plays a part in it. STUDY DESIGN AND METHODS: The therapeutic effect of pae was evaluated in a 3% DSS-induced UC mouse model. The role of pae in repairing the intestinal barrier was evaluated by detecting colonic cupped cells by Alcian blue staining, the expression of colonic epithelial tight junction protein by immunofluorescence and western blot, and the proportion of IL-22+ILC3 cells in the lamina propria lymphocytes by flow cytometry. Subsequently, 16S rRNA sequencing was used to observe the changes in intestinal flora, GC-MS was used to detect the level of SCFAs, and qPCR was used to identify the abundance of Clostridium butyricum in the intestine to evaluate the effect of pae on the gut microbiota. The antibiotic-mediated depletion of the gut flora was then used to verify that pae depends on C. butyricum to play a healing role. Finally, non-targeted metabolomics was employed to investigate the potential pathways of pae regulating C. butyricum. RESULTS: Pae could improve intestinal microecological imbalance and promote the production of short-chain fatty acids (SCFAs). Most importantly, we identified C. butyricum as a key bacterium responsible for the intestinal barrier repair effect of pae in UC mice. Eradication of intestinal flora by antibiotics abolished the repair of the intestinal barrier and the promotion of SCFAs production by pae, while C. butyricum colonization could restore the therapeutic effects of pae in UC mice, which further confirmed that C. butyricum was indeed the "driver bacterium" of pae in UC treatment. Untargeted metabolomics showed that pae regulated some amino acid metabolism and 2-Oxocarboxylic acid metabolism in C. butyricum. CONCLUSIONS: Our study showed that the restoration of the impaired intestinal barrier by pae to alleviate colitis is associated with increased C. butyricum and SCFAs production, which may be a promising strategy for the treatment of UC.


Subject(s)
Clostridium butyricum , Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , RNA, Ribosomal, 16S , Anti-Bacterial Agents , Fatty Acids, Volatile
6.
Meat Sci ; 204: 109235, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37301103

ABSTRACT

This study evaluated the contributions of Clostridium butyricum on skeletal muscle development, gastrointestinal flora and meat quality of lambs. Eighteen Dorper (♂) × Small Tailed Han sheep (♀) crossed ewe lambs of similar weight (27.43 ± 1.94 kg; age, 88 ± 5 days) were divided into two dietary treatments. The control group was fed the basal diet (C group), and the probiotic group was supplemented with C. butyricum on the basis of the C group (2.5 × 108 cfu/g, 5 g/day/lamb; P group) for 90 d. The results showed that dietary C. butyricum elevated growth performance, muscle mass, muscle fiber diameter and cross-sectional area, and decreased the shear force value of meat (P < 0.05). Moreover, C. butyricum supplementation accelerated protein synthesis by regulating the gene expression of IGF-1/Akt/mTOR pathway. We identified 54 differentially expressed proteins that regulated skeletal muscle development through different mechanisms by quantitative proteomics. These proteins were associated with ubiquitin-protease, apoptosis, muscle structure, energy metabolism, heat shock, and oxidative stress. The metagenomics sequencing results showed that Petrimonas at the genus level and Prevotella brevis at the species level in the rumen, while Lachnoclostridium, Alloprevotella and Prevotella at the genus level in the feces, were significantly enriched in the P group. Also, butyric acid and valeric acid levels were elevated in both rumen and feces of the P group. Overall, our results support the idea that C. butyricum could change gastrointestinal flora, and affect skeletal muscle development and meat quality of lambs by modulating gut-muscle axis.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , Female , Sheep , Animals , Clostridium butyricum/physiology , Dietary Supplements/analysis , Meat/analysis , Muscle Development , Animal Feed/analysis , Muscle, Skeletal/metabolism
7.
Fish Shellfish Immunol ; 138: 108790, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169113

ABSTRACT

In order to evaluate the effect of Clostridium butyricum (C. butyricum) feeding on intestinal microorganisms and protection against infection by Vibrio alginolyticus (V. alginolyticus) in Penaeus vannamei (P. vannamei). We set up two groups, CG30 (fed normal feed) and CB30 (fed feed supplemented with C. butyricum), for the 30d C. butyricum feeding test, and four groups, CG (CG30 group injected with PBS), CB (CB30 group injected with PBS), VACG (CG30 group injected with V. alginolyticus), and VACB (CB30 group injected with V. alginolyticus), for the 24 h infection test. The protective effect of C. butyricum against acute V. alginolyticus infection in P. vannamei was explained in terms of survival, histopathology, changes in enzyme activity, transcriptome analysis, and immune-related genes. We found that feeding C. butyricum significantly altered intestinal microbial populations' abundance and significantly reduced Vibrio spp. In the V. alginolyticus stress test, C. butyricum improved the survival rate and alleviated pathological changes in hepatopancreatic tissues, alleviated the reduction of superoxide dismutase (SOD) and phenoloxidase (PO) activity caused by infection, and increased the lysozyme content in P. vannamei. VACB group compared with the VACG group, 1730 up-regulated differentially expressed genes (DEGs) and 2029 down-regulated DEGs were screened. Quantitative real-time PCR (qRT-PCR) showed that dietary supplementation with C. butyricum suppressed the upregulation of alkaline phosphatase (AKP) transcription factors and the downregulation of prophenoloxidase (proPO), alpha-2-macroglobulin (A2M), and anti-lipopolysaccharide factor (ALF) induced by V. alginolyticus infection. In conclusion, feed supplementation with C. butyricum changed P. vannamei's population ratio of intestinal microorganisms. Moreover, C. butyricum has the potential to act as an inhibitor of V. alginolyticus infection and enhance the resistance of P. vannamei to V. alginolyticus infection.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , Penaeidae , Animals , Vibrio alginolyticus/physiology , Penaeidae/genetics , Dietary Supplements , Immunity, Innate/genetics
8.
Microbiol Res ; 272: 127384, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37141852

ABSTRACT

In this study, a strain of Clostridium butyricum was isolated from the intestine of Litopenaeus vannamei with the method of anaerobic microbial isolation and culture. Next, the probiotic properties of LV1 were evaluated with susceptibility tests, tolerance tests, and whole genome sequencing in vivo and in vitro, followed by the analysis of the effect of LV1 on the growth performance, immune response, and disease resistance of Litopenaeus vannamei. According to the results, the 16 S rDNA sequence of LV1 was 100% homolofgous to the reference sequence of Clostridium butyricum. Moreover, LV1 was resistant to several antibiotics including amikacin, streptomycin, and gentamicin and highly tolerated artificial gastric and artificial intestinal fluids. The whole genome of LV1 was 4625,068 bp in size and included 4336 coding genes. Among these genes, GO, KEGG, and COG databases exhibited the highest number of genes annotated to metabolic pathway classes and 105 genes annotated as glycoside hydrolases. Meanwhile, 176 virulence genes were predicted. The use of diets supplemented with 1.2 × 109 CFU/kg of LV1 live cells significantly increased the weight gain and specific growth rates of Litopenaeus vannamei and the activity of serum superoxide dismutase, glutathione peroxidase, acid phosphatase, and alkaline phosphatase (P < 0.05). Meanwhile, the use of these diets markedly improved the relative expression of intestinal immunity- and growth-related genes. In conclusion, LV1 has excellent probiotic properties. Specifically, the addition of 1.2 × 109 CFU/kg of LV1 live cells to the diet improved the growth performance, immune response, and disease-resistance of Litopenaeus vannamei.


Subject(s)
Clostridium butyricum , Disease Resistance , Humans , Disease Resistance/genetics , Clostridium butyricum/genetics , Dietary Supplements/analysis , Diet , Whole Genome Sequencing , Animal Feed/analysis , Immunity, Innate
9.
Front Vet Sci ; 10: 1088219, 2023.
Article in English | MEDLINE | ID: mdl-36861006

ABSTRACT

Yucca has abundant amounts of polyphenolics, steroidal saponins, and resveratrol and its extract can be used as a feed additive in the animal husbandry, which might contribute to the improvement in the growth and productivity in rabbit production. Hence, the current study aimed to examine the effects of yucca extract alone and in combination with Clostridium butyricum (C. butyricum) on growth performance, nutrient digestibility, muscle quality, and intestinal development of weaned rabbits. A total of 400 40-day-old male rabbits were randomly divided into 4 treatment groups for 40 days: (1) basal diet group, (2) basal diet contained 300 mg/kg of yucca extract, (3) basal diet supplemented with 0.4 × 1010 colony-forming units (CFU)/kg of C. butyricum, and (4) the blend of 0.4 × 1010/kg CFU of C. butyricum and 300 mg/kg of yucca extract. The supplementation of yucca extract or C. butyricum increased body weight (BW) of rabbits depending on the age, the combined addition of yucca extract and C. butyricum significantly increased BW, weight gain, and feed intake, companying with increased the digestibility of crud protein, fiber, phosphorous, and calcium as compared to control diet (P < 0.05). Furthermore, yucca extract and C. butyricum treatment alone and in combination notably increased the villus high and the ratio of villus high to crypt depth of rabbits (P < 0.05). The combined supplementation of yucca extract and C. butyricum altered the intestinal microbiota of rabbits, as demonstrated by increased the abundance of beneficial bacteria Ruminococcaceae and decreased the proportion of pathogenic bacteria such as Pseudomonadaceae and S24-7. In addition, the rabbits fed the diet with yucca extract and the blend of yucca extract and C. butyricum had significantly increased pH45min, decreased pressing loss, drip loss, and shears force when compared with rabbits received control diet (P < 0.05). Diet with C. butyricum or its mixture with yucca extract increased the fat content of meat, while the combined addition of yucca extract and C. butyricum declined the content of fiber in meat (P < 0.05). Collectively, the combined use of yucca extract and C. butyricum showed better results on growth performance and meat quality, which might be closely associated with the improved intestinal development and cecal microflora of the rabbits.

10.
Gut Microbes ; 15(1): 2186114, 2023.
Article in English | MEDLINE | ID: mdl-36941257

ABSTRACT

Probiotic roles of Clostridium butyricum (C.B) are involved in regulating disease and cancers, yet the mechanistic basis for these regulatory roles remains largely unknown. Here, we demonstrate that C.B reprograms the proliferation, migration, stemness, and tumor growth in CRC by regulating pivotal signal molecules including MYC. Destabilization of MYC by C.B supplementation suppresses cancer cell proliferation/metastasis, sensitizes 5-FU treatment, and boosts responsiveness of anti-PD1 therapy. MYC is a transcriptional regulator of Thymidylate synthase (TYMS), a key target of the 5-FU. Also MYC is known to impact on PD-1 expression. Mechanistically, C.B treatment of CRC cells results in MYC degradation by enhancing proteasome-mediated ubiquitination, thereby mitigating MYC-mediated 5-FU resistance and boosting anti-PD1 immunotherapeutic efficacy. Together, our findings uncover previously unappreciated links between C.B and CRC cell signaling, providing insight into the tumorigenesis modulating mechanisms of C.B in boosting chemo/immune therapies.


Subject(s)
Clostridium butyricum , Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Colorectal Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Fluorouracil/pharmacology , Fluorouracil/therapeutic use
11.
Front Immunol ; 14: 1099186, 2023.
Article in English | MEDLINE | ID: mdl-36756118

ABSTRACT

The mitigation and prevention of acute immune stress are essential for livestock production. Clostridium butyricum (C. butyricum) has shown positive effects in stabilizing intestinal microbiota disorders, improving immune function and inhibiting disease development, but its effects on ruminants are unclear. Therefore, the current trial hypothesized that C. butyricum could improve goats' immune function and antioxidant capacity by regulating bacterial communities and blood metabolism and effectively alleviating the acute immune stress induced by Lipopolysaccharides (LPS). Sixteen healthy goats were fed C. butyricum for 70 days, and the goats were challenged with LPS on day 71. Blood and feces were collected at 0 h and 6 h after the challenge to evaluate the effects of C. butyricum on their intestinal microbiota, immune function, antioxidant function, and plasma metabolites. The results showed that C. butyricum had no significant effect on plasma biochemical parameters at the beginning of the LPS challenge. However, supplementation with C. butyricum increased plasma levels of IgA, IgG, T-SOD, and T-AOC (P < 0.05), but TNF-α, IL-6, and MDA were decreased (P < 0.05). In contrast, IL-10 showed an increasing trend (P < 0.10). Rectal microbiota analysis showed that C. butyricum significantly increased the relative abundance of Epsilonbacteraeota at the phylum level of goats; at the genus level, the relative abundances of Campylobacter and Anaerorhabdus]_furcosa_group were also significantly increased (P < 0.05). Christensenellaceae_R-7_group as the dominant microbiota also showed a significant increase in their abundance values, while Clostridium and Lachnospiraceae_UCG-001 were significantly lower (P < 0.05). When the LPS challenge continued up to 6 h, dietary supplementation with C. butyricum still resulted in significantly higher plasma concentrations of IgA, IL-10, and T-SOD in goats than in the control group, reducing TNF-α levels (P < 0.05). In addition, plasma levels of T-CHOL and LDL were significantly reduced, and the expression of d-proline was significantly upregulated according to metabolomic analysis (P < 0.05). In conclusion, dietary supplementation with C. butyricum helped optimize the expression of bacterial communities and plasma metabolites to enhance the ability of goats to alleviate acute immune stress.


Subject(s)
Clostridium butyricum , Probiotics , Animals , Intestines/microbiology , Clostridium butyricum/physiology , Antioxidants , Lipopolysaccharides , Interleukin-10 , Goats , Tumor Necrosis Factor-alpha , Bacteria , Immunoglobulin A , Superoxide Dismutase
12.
Dig Dis Sci ; 68(6): 2427-2440, 2023 06.
Article in English | MEDLINE | ID: mdl-36670324

ABSTRACT

BACKGROUND/AIMS: A high-fat diet (HFD) can cause intestinal inflammation and alter the gut microbiota; probiotics, however, are known to have anti-inflammatory effects. This study aimed to investigate the response of rat colon to HFD and the effect of Clostridium butyricum on HFD-induced intestinal inflammation and production of short-chain fatty acids (SCFAs) according to sex. METHODS: Male and female 6-week-old Fischer-344 rats were fed a chow diet or HFD for 8 weeks, and Biovita or three different concentrations of C. butyricum were orally gavaged. The levels of tight junction proteins (TJPs), inflammatory markers in the ascending colonic mucosa, and bile acids (BAs) and SCFAs in stool were measured. RESULTS: HFD significantly increased the histological inflammation scores and fat proportions. Fecal BA levels were higher in the HFD group than in the control group, with a more prominent increase in deoxycholic acid/cholic acid after probiotics administration in females; however, no statistically significant differences were observed. TJPs showed an opposite response to HFD depending on sex, and tended to increase and decrease after HFD in males and females, respectively. The HFD-reduced TJPs were recovered by probiotics, with some statistical significance in females. HFD-decreased butyric acid in stools appeared to be recovered by probiotics in males, but not in females. The expression of inflammatory markers (TNF-α) was increased by HFD in males and decreased with medium-concentration probiotic supplementation. The opposite was observed in females. MPO was increased by HFD in both sexes and decreased by probiotic supplementation. CONCLUSIONS: The probiotic C. butyricum improved indicators of HFD-induced colonic inflammation such as levels of inflammatory markers and increased the production of SCFAs and the expression of TJPs. These effects tended to be more pronounced in male rats, showing sex difference.


Subject(s)
Clostridium butyricum , Probiotics , Female , Male , Rats , Animals , Mice , Diet, High-Fat/adverse effects , Clostridium butyricum/metabolism , Fatty Acids, Volatile/metabolism , Inflammation/etiology , Butyric Acid/pharmacology , Probiotics/pharmacology , Mice, Inbred C57BL
13.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674973

ABSTRACT

Bone health problems are a serious threat to laying hens; microbiome-based therapies, which are harmless and inexpensive, may be an effective solution for bone health problems. Here, we examined the impacts of supplementation with Clostridium butyricum (CB) on bone and immune homeostasis in pullets. The results of in vivo experiments showed that feeding the pullets CB was beneficial to the development of the tibia and upregulated the levels of the bone formation marker alkaline phosphatase and the marker gene runt-related transcription factor 2 (RUNX2). For the immune system, CB treatment significantly upregulated IL-10 expression and significantly increased the proportion of T regulatory (Treg) cells in the spleen and peripheral blood lymphocytes. In the in vitro test, adding CB culture supernatant or butyrate to the osteoblast culture system showed no significant effects on osteoblast bone formation, while adding lymphocyte culture supernatant significantly promoted bone formation. In addition, culture supernatants supplemented with treated lymphocytes (pretreated with CB culture supernatants) stimulated higher levels of bone formation. In sum, the addition of CB improved bone health by modulating cytokine expression and the ratio of Treg cells in the immune systems of layer pullets. Additionally, in vitro CB could promote the bone formation of laying hen osteoblasts through the mediation of lymphocytes.


Subject(s)
Chickens , Clostridium butyricum , Animals , Female , Chickens/metabolism , Dietary Supplements , Bone Development , Cytokines/metabolism
14.
Cell Rep ; 41(11): 111755, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516771

ABSTRACT

The precise mechanism by which butyrate-producing bacteria in the gut contribute to resistance to respiratory viral infections remains to be elucidated. Here, we describe a gut-lung axis mechanism and report that orally administered Clostridium butyricum (CB) enhances influenza virus infection resistance through upregulation of interferon (IFN)-λ in lung epithelial cells. Gut microbiome-induced ω-3 fatty acid 18-hydroxy eicosapentaenoic acid (18-HEPE) promotes IFN-λ production through the G protein-coupled receptor (GPR)120 and IFN regulatory factor (IRF)-1/-7 activations. CB promotes 18-HEPE production in the gut and enhances ω-3 fatty acid sensitivity in the lungs by promoting GPR120 expression. This study finds a gut-lung axis mechanism and provides insights into the treatments and prophylaxis for viral respiratory infections.


Subject(s)
Clostridium butyricum , Fatty Acids, Omega-3 , Orthomyxoviridae Infections , Humans , Clostridium butyricum/metabolism , Interferon Lambda , Up-Regulation , Fatty Acids, Omega-3/metabolism
15.
Metabolites ; 12(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36005638

ABSTRACT

Heat stress can adversely affect the rumen environment and the growth performance of goats. The present study aimed to investigate the effects of Saccharomyces cerevisiae (SC), Clostridium butyricum (CB), and their mixture on B-vitamin production in the rumen and the growth performance of heat-stressed goats. Firstly, twelve Macheng × Boer crossed goats (24.21 ± 2.05 kg, control) were modeled to become heat-stressed goats (HS1). Then, the B-vitamin concentrations in the rumen and the parameters of growth performance were measured in goats. The results showed that heat stress could cause significantly decreased vitamin B1, B2, B6, B12, and niacin concentrations (p < 0.05). It also could cause a significantly reduced dry matter (DM) intake (DMI) and average daily gain (ADG) (p < 0.05). However, the digestibilities of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) were significantly increased (p < 0.05) in HS1 compared to controls. Then, these twelve heat-stressed goats were divided equally into four groups: control group (HS2, no probiotic supplemented), SC group (0.30% SC supplemented to the basal diet), CB group (0.05% CB supplemented to the basal diet), and mix group (0.30% SC and 0.05% CB supplemented to the basal diet). They were used in a 4 × 4 Latin square experimental design. The results showed that the concentrations of vitamins B1, B2, and niacin in the rumen and the DMI, ADG, and the digestibility of DM, NDF, and ADF were significantly increased (p < 0.05) with SC, CB, and their mixture supplementation (p < 0.05). These results suggest that dietary supplementation with SC and CB could improve B-vitamin production in the rumen and the growth performance of heat-stressed goats.

16.
Fish Shellfish Immunol ; 126: 283-291, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35618172

ABSTRACT

Clostridium butyricum (CB) is a gram-positive bacterium that secretes short-chain fatty acids such as butyric acid and so on. An 8-week feeding trial was conducted to investigate the effects of CB on the growth performance, antioxidant capacity, immunity and resistance to Vibrio parahaemolyticus in Litopenaeus Vannamei fed with cottonseed protein concentrate (CPC) replacement of fishmeal. Six iso-nitrogenous (40%) and iso-lipidic (6%) diets were formulated including a positive control group (PC, 25% fishmeal), a negative control group (NC, CPC replaced 30% of fishmeal protein), and 0.03% (C1, 3 × 108 CFU/kg), 0.12% (C2, 1.2 × 109 CFU/kg), 0.48% (C3, 4.8 × 109 CFU/kg) and 1.92% (C4, 1.92 × 1010 CFU/kg) CB were supplemented on the negative control group (NC). After the feeding trial, the remaining shrimp in each treatment group were subjected to a challenge experiment with Vibrio parahaemolyticus. The results indicated that weight gain rate (WGR), specific growth rate (SGR) in C4 group were significantly lower than those in PC and C2 groups (P < 0.05); the feed conversion ratio (FCR) was significantly higher than that of PC and C2 groups (P < 0.05). There was no significant difference in survival rate (SR) among all groups (P > 0.05). Compared to the PC and NC groups, the total superoxide capacity, superoxide dismutase and lysozyme were significantly higher in the C4 group (P < 0.05); the glutathione peroxidase, acid phosphatase and alkaline phosphatase were significantly higher in the C3 group (P < 0.05); and the malondialdehyde was significantly lower in the C4 group (P < 0.05). The relative mRNA expressions of Toll receptor (TLR), innate immune deficiency gene (IMD), penaiedin3a (Pen3) were significantly down-regulated in the NC group than those in the PC group (P < 0.05). In addition, the relative mRNA expressions of TLR, IMD and Pen3 were significantly up-regulated in all groups supplemented with CB than those in the NC group (P < 0.05). Moreover, the cumulative mortality rate in the NC group was not significantly different from the PC group (P > 0.05) and was significantly higher than those in the C3 and C4 groups (P < 0.05). In conclusion, the CB supplementation on the basis of CPC replacement of 30% fishmeal protein enhanced significantly the antioxidant capacity, immunity and disease resistance of shrimp and improved its growth performance. Therefore, considering the factors of the growth, immunity and disease resistance, the CB supplementation of 0.12%-0.48% (1.2 × 109 CFU/kg-4.8 × 109 CFU/kg) was recommended in the diet of L. vannamei based on the results of this experiment.


Subject(s)
Clostridium butyricum , Penaeidae , Vibrio parahaemolyticus , Animals , Antioxidants/metabolism , Cottonseed Oil , Diet/veterinary , Dietary Supplements , Disease Resistance , Immunity, Innate , RNA, Messenger , Vibrio parahaemolyticus/genetics
17.
Anim Nutr ; 7(4): 1105-1114, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34738041

ABSTRACT

Clostridium butyricum has been widely considered an antibiotic substitute in recent years. It can promote growth performance, improve the immune response and enhance the intestinal barrier function of the host. In the present study, 1-d-old Arbor Acres (AA) broilers were fed C. butyricum (1 × 109 cfu/kg) for 28 d. The transcriptomic characteristics of epithelial cells of the cecal mucosa were determined by RNA-sequence, and the cecal microbiota composition was explored by 16S ribosomal RNA gene sequencing. The changes in the intestinal mucosa of broilers were then analyzed by tissue staining. Gene Ontology (GO) annotations identified substance transport and processes and pathways that might participate in intestinal development and cell viability. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the differentially expressed genes are involved in numerous pathways related to amino acid and vitamin metabolism and antioxidant and defensive functions, among others. The relative expression of some genes associated with intestinal barrier function (claudins 2, 15, 19, and 23, tight junction proteins 1, 2, and 3 and mucin 1) was significantly increased in the treatment group (P < 0.05 or P < 0.01). Moreover, the proportion of Firmicutes was higher in the C. butyricum-treated group, whereas the proportion of Proteobacteria was higher in the control group. At the genus level, the relative abundances of Butyricicoccus and Lactobacillus, among other bacteria, were increased after C. butyricum supplementation. The tissue staining analysis showed that the cecal mucosa of broilers was significantly ameliorated after the addition of C. butyricum (P < 0.05 or P < 0.01). These results showed that dietary supplementation with C. butyricum can enhance the antioxidant capacity, mucosal barrier function, and stabilize the cecal microbiota, resulting in improving the growth performance.

18.
Nutrients ; 13(8)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34444952

ABSTRACT

Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut-kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , Limosilactobacillus reuteri , Nephritis/microbiology , Probiotics/administration & dosage , Animals , Butyric Acid/metabolism , Cisplatin/toxicity , Disease Models, Animal , Inflammation , Kidney/microbiology , Nephritis/chemically induced , Nephritis/therapy , Rats , Rats, Wistar
19.
Gut Microbes ; 13(1): 1-28, 2021.
Article in English | MEDLINE | ID: mdl-33874858

ABSTRACT

Clostridium butyricum is a butyrate-producing human gut symbiont that has been safely used as a probiotic for decades. C. butyricum strains have been investigated for potential protective or ameliorative effects in a wide range of human diseases, including gut-acquired infection, intestinal injury, irritable bowel syndrome, inflammatory bowel disease, neurodegenerative disease, metabolic disease, and colorectal cancer. In this review we summarize the studies on C. butyricum supplementation with special attention to proposed mechanisms for the associated health benefits and the supporting experimental evidence. These mechanisms center on molecular signals (especially butyrate) as well as immunological signals in the digestive system that cascade well beyond the gut to the liver, adipose tissue, brain, and more. The safety of probiotic C. butyricum strains appears well-established. We identify areas where additional human randomized controlled trials would provide valuable further data related to the strains' utility as an intervention.


Subject(s)
Butyrates/metabolism , Clostridium butyricum/immunology , Clostridium butyricum/metabolism , Immunity , Probiotics , Animals , Dietary Supplements , Host Microbial Interactions , Humans , Inflammation/immunology , Inflammation/microbiology , Irritable Bowel Syndrome/immunology , Irritable Bowel Syndrome/microbiology , Metabolic Diseases/immunology , Metabolic Diseases/microbiology , Neoplasms/immunology , Neoplasms/microbiology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/microbiology , Symbiosis
20.
Anaerobe ; 63: 102206, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32339663

ABSTRACT

Clostridium difficile infection (CDI) is a common cause of morbidity and mortality in hospitalized patients worldwide. The major problem facing current treatment is multiple recurrences, prompting the need for alternative therapies. In this study we isolated bacterial species, from Egyptian individuals' stool, with antimicrobial activity against clinical isolates of C. difficile and tried to examine the nature of the produced antimicrobials. In vitro antibacterial activity against C. difficile was initially screened in 123 fecal samples cultures using an agar overlay method. The isolates with antimicrobial activity against C. difficile in addition to Clostridium isolates were identified using partial 16S rDNA gene sequencing analysis. The isolates acting against C. difficile belonged to Lactobacillus, Enterococcus and Clostridium genera. The concentrated cell-free supernatants (CFSs) from these bacterial isolates were examined for antimicrobial activity against C. difficile growth by broth dilution method. 10 x concentrated CFSs of five isolates showed inhibition for C. difficile growth which was significantly different (p < 0.001) from control. Lactobacillus agilis T99A and Clostridium butyricum T58A isolates were selected for further evaluation of the produced antimicrobials. The antimicrobial activity of 10x CFSs of the two isolates was stable after enzymatic treatment with proteinase K or heating treatments up to 90 °C or neutralizing pH. The spectrum of activity of the two isolates was evaluated using different gram-positive and gram-negative bacterial species and did not show antimicrobial activity against these species. Our results showed two unconventional bacterial isolates: L. agilis T99A and C. butyricum T58A producing extracellular thermo stable antimicrobial agents against C. difficile clinical isolates.


Subject(s)
Anti-Bacterial Agents , Bacteria, Anaerobic/metabolism , Clostridioides difficile , Clostridium Infections , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridioides difficile/growth & development , Clostridioides difficile/isolation & purification , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Clostridium butyricum/metabolism , Feces/microbiology , Humans , Lactobacillus/metabolism , Microbial Interactions
SELECTION OF CITATIONS
SEARCH DETAIL