Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Proc Natl Acad Sci U S A ; 120(29): e2117484120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428907

ABSTRACT

One major question in neuroscience is how to relate connectomes to neural activity, circuit function, and learning. We offer an answer in the peripheral olfactory circuit of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected through feedback loops with interconnected inhibitory local neurons (LNs). We combine structural and activity data and, using a holistic normative framework based on similarity-matching, we formulate biologically plausible mechanistic models of the circuit. In particular, we consider a linear circuit model, for which we derive an exact theoretical solution, and a nonnegative circuit model, which we examine through simulations. The latter largely predicts the ORN [Formula: see text] LN synaptic weights found in the connectome and demonstrates that they reflect correlations in ORN activity patterns. Furthermore, this model accounts for the relationship between ORN [Formula: see text] LN and LN-LN synaptic counts and the emergence of different LN types. Functionally, we propose that LNs encode soft cluster memberships of ORN activity, and partially whiten and normalize the stimulus representations in ORNs through inhibitory feedback. Such a synaptic organization could, in principle, autonomously arise through Hebbian plasticity and would allow the circuit to adapt to different environments in an unsupervised manner. We thus uncover a general and potent circuit motif that can learn and extract significant input features and render stimulus representations more efficient. Finally, our study provides a unified framework for relating structure, activity, function, and learning in neural circuits and supports the conjecture that similarity-matching shapes the transformation of neural representations.


Subject(s)
Connectome , Olfactory Receptor Neurons , Animals , Drosophila , Olfactory Receptor Neurons/physiology , Smell/physiology , Larva
2.
Curr Biol ; 33(16): 3360-3370.e4, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37490920

ABSTRACT

Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae are cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons. The anatomical location, gene expression, and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, even in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae, the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low-level inputs while restricting them temporally to the troughs in inhibition.


Subject(s)
Ciona intestinalis , Ciona , Animals , Ciona/physiology , Neurons/physiology , Photoreceptor Cells/physiology , Hypothalamus , Larva/physiology
3.
Acta Neurochir (Wien) ; 165(9): 2489-2500, 2023 09.
Article in English | MEDLINE | ID: mdl-37199758

ABSTRACT

BACKGROUND: Understanding the structural connectivity of white matter tracts (WMT) and their related functions is a prerequisite to implementing an "a la carte" "connectomic approach" to glioma surgery. However, accessible resources facilitating such an approach are lacking. Here we present an educational method that is readily accessible, simple, and reproducible that enables the visualization of WMTs on individual patient images via an atlas-based approach. METHODS: Our method uses the patient's own magnetic resonance imaging (MRI) images and consists of three main steps: data conversion, normalization, and visualization; these are accomplished using accessible software packages and WMT atlases. We implement our method on three common cases encountered in glioma surgery: a right supplementary motor area tumor, a left insular tumor, and a left temporal tumor. RESULTS: Using patient-specific perioperative MRIs with open-sourced and co-registered atlas-derived WMTs, we highlight the critical subnetworks requiring specific surgical monitoring identified intraoperatively using direct electrostimulation mapping with cognitive monitoring. The aim of this didactic method is to provide the neurosurgical oncology community with an accessible and ready-to-use educational tool, enabling neurosurgeons to improve their knowledge of WMTs and to better learn their oncologic cases, especially in glioma surgery using awake mapping. CONCLUSIONS: Taking no more than 3-5 min per patient and irrespective of their resource settings, we believe that this method will enable junior surgeons to develop an intuition, and a robust 3-dimensional imagery of WMT by regularly applying it to their cases both before and after surgery to develop an "a la carte" connectome-based perspective to glioma surgery.


Subject(s)
Brain Neoplasms , Connectome , Glioma , White Matter , Humans , Connectome/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Neurosurgical Procedures/methods , Glioma/diagnostic imaging , Glioma/surgery , Glioma/pathology , White Matter/pathology , Brain Mapping/methods , Brain/surgery
4.
J Neurooncol ; 162(3): 525-533, 2023 May.
Article in English | MEDLINE | ID: mdl-36940053

ABSTRACT

PURPOSE: The understanding of cognitive symptoms in patients with IDH-Mutant gliomas (IDH-Mut) is rapidly developing. In this article, we summarize the neuroscientific knowledge base regarding the influence of IDH-Mut tumors and their treatment on cognition and provide guidance regarding the management of these symptoms in patients. METHODS: We performed a review of peer reviewed publications relevant to IDH-Mut glioma and cognitive outcomes and provide an overview of the literature as well as a case example to clarify management strategies. RESULTS: At the time of presentation, patients with IDH-Mut gliomas have a favorable cognitive profile as compared with those with IDH-wild type (WT) tumors. The relatively low cognitive burden may reflect the slower growth rate of IDH-Mut tumors, which is less disruptive to both local and widespread neural networks. Human connectomic research using a variety of modalities has demonstrated relatively preserved network efficiency in patients with IDH-Mut gliomas as compared with IDH-WT tumors. Risk of cognitive decline from surgery can potentially be mitigated by careful integration of intra-operative mapping. Longer term cognitive risks of tumor treatment, including chemotherapy and radiation, are best managed by instituting neuropsychological assessment as part of the long-term care of patients with IDH-Mutant glioma. A specific timeline for such integrative care is provided. CONCLUSIONS: Given the relative recency of the IDH-mutation based classification of gliomas, as well as the long time course of this disease, a thoughtful and comprehensive strategy to studying patient outcomes and devising methods of cognitive risk reduction is required.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/complications , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Neuropsychology , Glioma/complications , Glioma/genetics , Glioma/therapy , Isocitrate Dehydrogenase/genetics , Mutation
5.
Hum Brain Mapp ; 44(16): 5238-5293, 2023 11.
Article in English | MEDLINE | ID: mdl-36537283

ABSTRACT

We propose a unique, minimal assumption, approach based on variance analyses (compared with standard approaches) to investigate genetic influence on individual differences on the functional connectivity of the brain using 65 monozygotic and 65 dizygotic healthy young adult twin pairs' low-frequency oscillation resting state functional Magnetic Resonance Imaging (fMRI) data from the Human Connectome Project. Overall, we found high number of genetically-influenced functional (GIF) connections involving posterior to posterior brain regions (occipital/temporal/parietal) implicated in low-level processes such as vision, perception, motion, categorization, dorsal/ventral stream visuospatial, and long-term memory processes, as well as high number across midline brain regions (cingulate) implicated in attentional processes, and emotional responses to pain. We found low number of GIF connections involving anterior to anterior/posterior brain regions (frontofrontal > frontoparietal, frontotemporal, frontooccipital) implicated in high-level processes such as working memory, reasoning, emotional judgment, language, and action planning. We found very low number of GIF connections involving subcortical/noncortical networks such as basal ganglia, thalamus, brainstem, and cerebellum. In terms of sex-specific individual differences, individual differences in males were more genetically influenced while individual differences in females were more environmentally influenced in terms of the interplay of interactions of Task positive networks (brain regions involved in various task-oriented processes and attending to and interacting with environment), extended Default Mode Network (a central brain hub for various processes such as internal monitoring, rumination, and evaluation of self and others), primary sensorimotor systems (vision, audition, somatosensory, and motor systems), and subcortical/noncortical networks. There were >8.5-19.1 times more GIF connections in males than females. These preliminary (young adult cohort-specific) findings suggest that individual differences in the resting state brain may be more genetically influenced in males and more environmentally influenced in females; furthermore, standard approaches may suggest that it is more substantially nonadditive genetics, rather than additive genetics, which contribute to the differences in sex-specific individual differences based on this young adult (male and female) specific cohort. Finally, considering the preliminary cohort-specific results, based on standard approaches, environmental influences on individual differences may be substantially greater than that of genetics, for either sex, frontally and brain-wide. [Correction added on 10 May 2023, after first online publication: added: functional Magnetic Resonance Imaging. Added: individual differences in, twice. Added statement between furthermore … based on standard approaches.].


Subject(s)
Brain , Connectome , Female , Humans , Male , Young Adult , Basal Ganglia , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Connectome/methods , Magnetic Resonance Imaging , Nerve Net/physiology , Thalamus , Twins, Dizygotic
6.
Neuropsychologia ; 179: 108451, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36535422

ABSTRACT

Episodic future thinking (EFT) refers to the critical ability that enables people to construct and pre-experience the vivid mental imagery about future events, which impacts on the decision-making for individuals and group. Although EFT is generally believed to have a visual nature by theorists, little neuroscience evidence has been provided to verify this assumption. Here, by employing the approach of connectome-based predictive modeling (CPM) and graph-theoretical analysis, we analyzed resting-state functional brain image from 191 participants to predict their variability of EFT ability (leave-one-out cross-validation), and validated the results by applying different parcellation schemas and feature selection thresholds. At the connectome strength level, CPM-based analysis revealed that EFT ability could be predicted by the connectome strength of visual network. Besides, at the network level, graph-theoretical analysis showed that EFT ability could be predicted by the network efficiency of visual network. Moreover, these findings were replicated using different parcellation schemas and feature selection thresholds. These results robustly and collectively supported that the visual network might be one of the neural substrates underlying EFT ability from a comprehensive perspective of resting-state functional connectivity strength and the neural network. This study provides indications on how the function of visual network supports EFT ability, and enhances our understanding of the EFT ability from a neural basis perspective.


Subject(s)
Connectome , Memory, Episodic , Humans , Thinking , Magnetic Resonance Imaging , Brain/diagnostic imaging
7.
Front Oncol ; 12: 947933, 2022.
Article in English | MEDLINE | ID: mdl-35865482

ABSTRACT

Early maximal surgical resection is the first treatment in diffuse low-grade glioma (DLGG), because the reduction of tumor volume delays malignant transformation and extends survival. Awake surgery with intraoperative mapping and behavioral monitoring enables to preserve quality of life (QoL). However, because of the infiltrative nature of DLGG, relapse is unavoidable, even after (supra)total resection. Therefore, besides chemotherapy and radiotherapy, the question of reoperation(s) is increasingly raised, especially because patients with DLGG usually enjoy a normal life with long-lasting projects. Here, the purpose is to review the literature in the emerging field of iterative surgeries in DLGG. First, long-term follow-up results showed that patients with DLGG who underwent multiple surgeries had an increased survival (above 17 years) with preservation of QoL. Second, the criteria guiding the decision to reoperate and defining the optimal timing are discussed, mainly based on the dynamic intercommunication between the glioma relapse (including its kinetics and pattern of regrowth) and the reactional cerebral reorganization-i.e., mechanisms underpinning reconfiguration within and across neural networks to enable functional compensation. Third, how to adapt medico-surgical strategy to this individual spatiotemporal brain tumor interplay is detailed, by considering the perpetual changes in connectome. These data support early reoperation in recurrent DLGG, before the onset of symptoms and before malignant transformation. Repeat awake resection(s) should be integrated in a global management including (neo)adjuvant medical treatments, to enhance long-lasting functional and oncological outcomes. The prediction of potential and limitation of neuroplasticity at each step of the disease must be improved to anticipate personalized multistage therapeutic attitudes.

8.
Neuroimage ; 258: 119340, 2022 09.
Article in English | MEDLINE | ID: mdl-35649466

ABSTRACT

The thalamus is a brain region formed from functionally distinct nuclei, which contribute in important ways to various cognitive processes. Yet, much of the human neuroscience literature treats the thalamus as one homogeneous region, and consequently the unique contribution of specific nuclei to behaviour remains under-appreciated. This is likely due in part to the technical challenge of dissociating nuclei using conventional structural imaging approaches. Yet, multiple algorithms exist in the neuroimaging literature for the automated segmentation of thalamic nuclei. One recent approach developed by Iglesias and colleagues (2018) generates segmentations by applying a probabilistic atlas to subject-space anatomical images using the FreeSurfer software. Here, we systematically validate the efficacy of this segmentation approach in delineating thalamic nuclei using Human Connectome Project data. We provide several metrics quantifying the quality of segmentations relative to the Morel stereotaxic atlas, a widely accepted anatomical atlas based on cyto- and myeloarchitecture. The automated segmentation approach generated boundaries between the anterior, lateral, posterior, and medial divisions of the thalamus. Segmentation efficacy, as measured by metrics of dissimilarity (Average Hausdorff Distance) and overlap (DICE coefficient) within groups was mixed. Regions were better delineated in anterior, lateral and medial thalamus than the posterior thalamus, however all the volumes for all segmented nuclei were significantly different to the corresponding region of the Morel atlas. These mixed results suggest users should exercise care when using this approach to study the structural or functional relevance of a given thalamic nucleus.


Subject(s)
Connectome , Thalamus , Algorithms , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Thalamic Nuclei/diagnostic imaging , Thalamus/diagnostic imaging
9.
Front Oncol ; 12: 924762, 2022.
Article in English | MEDLINE | ID: mdl-35712489

ABSTRACT

Awake surgery for brain gliomas improves resection while minimizing morbidity. Although intraoperative mapping was originally used to preserve motor and language functions, the considerable increase of life expectancy, especially in low-grade glioma, resulted in the need to enhance patients' long-term quality of life. If the main goal of awake surgery is to resume normal familial and socio-professional activities, preventing hemiparesis and aphasia is not sufficient: cognitive and emotional functions must be considered. To monitor higher-order functions, e.g., executive control, semantics or mentalizing, further tasks were implemented into the operating theater. Beyond this more accurate investigation of function-specific neural networks, a better exploration of the inter-system communication is required. Advances in brain connectomics led to a meta-network perspective of neural processing, which emphasizes the pivotal role of the dynamic interplay between functional circuits to allow complex and flexible, goal-directed behaviors. Constant multi-tasking with time constraint in awake patients may be proposed during intraoperative mapping, since it provides a mirror of the (dys)synchronization within and across neural networks and it improves the sensitivity of behavioral monitoring by increasing cognitive demand throughout the resection. Electrical mapping may hamper the patient to perform several tasks simultaneously whereas he/she is still capable to achieve each task in isolation. Unveiling the meta-network organization during awake mapping by using a more ecological multi-demand testing, more representative of the real-life conditions, constitutes a reliable way to tailor the surgical onco-functional balance based upon the expectations of each patient, enabling him/her to resume an active life with long-lasting projects.

10.
Neuroimage ; 249: 118865, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35031472

ABSTRACT

Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor functions in living humans in health and disease.


Subject(s)
Arousal/physiology , Brain Stem/physiology , Connectome , Magnetic Resonance Imaging , Motor Activity/physiology , Nerve Net/physiology , Adult , Brain Stem/diagnostic imaging , Connectome/methods , Female , Humans , Male , Nerve Net/diagnostic imaging
11.
J Neurosurg ; 136(1): 231-241, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34359039

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) of the centromedian thalamic nucleus has been reportedly used to treat severe Tourette syndrome, yielding promising outcomes. However, it remains unclear how DBS electrode position and stimulation parameters modulate the specific area and related networks. The authors aimed to evaluate the relationships between the anatomical location of stimulation fields and clinical responses, including therapeutic and side effects. METHODS: The authors collected data from 8 patients with Tourette syndrome who were treated with DBS. The authors selected the active contact following threshold tests of acute side effects and gradually increased the stimulation intensity within the therapeutic window such that acute and chronic side effects could be avoided at each programming session. The patients were carefully interviewed, and stimulation-induced side effects were recorded. Clinical outcomes were evaluated using the Yale Global Tic Severity Scale, the Yale-Brown Obsessive-Compulsive Scale, and the Hamilton Depression Rating Scale. The DBS lead location was evaluated in the normalized brain space by using a 3D atlas. The volume of tissue activated was determined, and the associated normative connective analyses were performed to link the stimulation field with the therapeutic and side effects. RESULTS: The mean follow-up period was 10.9 ± 3.9 months. All clinical scales showed significant improvement. Whereas the volume of tissue activated associated with therapeutic effects covers the centromedian and ventrolateral nuclei and showed an association with motor networks, those associated with paresthesia and dizziness were associated with stimulation of the ventralis caudalis and red nucleus, respectively. Depressed mood was associated with the spread of stimulation current to the mediodorsal nucleus and showed an association with limbic networks. CONCLUSIONS: This study addresses the importance of accurate implantation of DBS electrodes for obtaining standardized clinical outcomes and suggests that meticulous programming with careful monitoring of clinical symptoms may improve outcomes.


Subject(s)
Deep Brain Stimulation/methods , Thalamus/anatomy & histology , Thalamus/surgery , Tourette Syndrome/pathology , Tourette Syndrome/surgery , Adolescent , Adult , Child , Child, Preschool , Deep Brain Stimulation/adverse effects , Depression/etiology , Dizziness/etiology , Female , Follow-Up Studies , Humans , Intralaminar Thalamic Nuclei/anatomy & histology , Intralaminar Thalamic Nuclei/diagnostic imaging , Intralaminar Thalamic Nuclei/surgery , Male , Middle Aged , Nerve Net/anatomy & histology , Neuroanatomy , Paresthesia/etiology , Postoperative Complications , Prospective Studies , Psychiatric Status Rating Scales , Red Nucleus/anatomy & histology , Red Nucleus/surgery , Treatment Outcome , Ventral Thalamic Nuclei/anatomy & histology , Ventral Thalamic Nuclei/diagnostic imaging , Ventral Thalamic Nuclei/surgery , Young Adult
12.
Cerebellum ; 21(1): 101-115, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34052968

ABSTRACT

The objective of this study was to identify the decussating dentato-rubro-thalamic tract (d-DRTT) and its afferent and efferent connections in healthy humans using diffusion spectrum imaging (DSI) techniques. In the present study, the trajectory and lateralization of the d-DRTT was explored using data from subjects in the Massachusetts General Hospital-Human Connectome Project adult diffusion dataset. The afferent and efferent networks that compose the cerebello-thalamo-cerebral pathways were also reconstructed. Correlation analysis was performed to identify interrelationships between subdivisions of the cerebello-dentato-rubro-thalamic and thalamo-cerebral connections. The d-DRTT was visualized bilaterally in 28 subjects. According to a normalized quantitative anisotropy and lateralization index evaluation, the left and right d-DRTT were relatively symmetric. Afferent regions were found mainly in the posterior cerebellum, especially the entire lobule VII (crus I, II and VIIb). Efferent fibers mainly are projected to the contralateral frontal cortex, including the motor and nonmotor regions. Correlations between cerebello-thalamic connections and thalamo-cerebral connections were positive, including the lobule VIIa (crus I and II) to the medial prefrontal cortex (MPFC) and the dorsolateral prefrontal cortex and lobules VI, VIIb, VIII, and IX, to the MPFC and motor and premotor areas. These results provide DSI-based tratographic evidence showing segregated and parallel cerebellar outputs to cerebral regions. The posterior cerebellum may play an important role in supporting and handling cognitive activities through d-DRTT. Future studies will allow for a more comprehensive understanding of cerebello-cerebral connections.


Subject(s)
Motor Cortex , Thalamus , Adult , Cerebellum/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Humans , Neural Pathways/diagnostic imaging , Thalamus/diagnostic imaging
13.
Brain Struct Funct ; 227(3): 763-778, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34791508

ABSTRACT

A modified and extended version, HCPex, is provided of the surface-based Human Connectome Project-MultiModal Parcellation atlas of human cortical areas (HCP-MMP v1.0, Glasser et al. 2016). The original atlas with 360 cortical areas has been modified in HCPex for ease of use with volumetric neuroimaging software, such as SPM, FSL, and MRIcroGL. HCPex is also an extended version of the original atlas in which 66 subcortical areas (33 in each hemisphere) have been added, including the amygdala, thalamus, putamen, caudate nucleus, nucleus accumbens, globus pallidus, mammillary bodies, septal nuclei and nucleus basalis. HCPex makes available the excellent parcellation of cortical areas in HCP-MMP v1.0 to users of volumetric software, such as SPM and FSL, as well as adding some subcortical regions, and providing labelled coronal views of the human brain.


Subject(s)
Connectome , Brain , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Thalamus
14.
Rev Neurol (Paris) ; 177(9): 1093-1103, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34563375

ABSTRACT

Although clinical neurology was mainly erected on the dogma of localizationism, numerous reports have described functional recovery after lesions involving presumed non-compensable areas in an inflexible view of brain processing. Here, the purpose is to review new insights into the functional connectome and the mechanisms underpinning neural plasticity, gained from intraoperative direct electrostimulation mapping and real-time behavioral monitoring in awake patients, combined with perioperative neuropsychological and neuroimaging data. Such longitudinal anatomo-functional correlations resulted in the reappraisal of classical models of cognition, especially by highlighting the dynamic interplay within and between neural circuits, leading to the concept of meta-network (network of networks), as well as by emphasizing that subcortical connectivity is the main limitation of neuroplastic potential. Beyond their contribution to basic neurosciences, these findings might also be helpful for an optimization of care for brain-damaged patients, such as in resective oncological or epilepsy neurosurgery in structures traditionally deemed inoperable (e.g., in Broca's area) as well as for elaborating new programs of functional rehabilitation, eventually combined with transcranial brain stimulation, aiming to change the connectivity patterns in order to enhance cognitive competences following cerebral injury.


Subject(s)
Brain Neoplasms , Connectome , Brain/diagnostic imaging , Brain/surgery , Brain Neoplasms/complications , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Humans , Neuronal Plasticity , Neurosurgical Procedures , Wakefulness
15.
Acta Neurochir (Wien) ; 163(4): 905-917, 2021 04.
Article in English | MEDLINE | ID: mdl-33564906

ABSTRACT

The classical way for surgical selection and planning in cerebral glioma mainly focused on tumor topography. The emerging science of connectomics, which aims of mapping brain connectivity, resulted in a paradigmatic shift from a modular account of cerebral organization to a meta-network perspective. Adaptive behavior is actually mediated by constant changes in interactions within and across large-scale delocalized neural systems underlying conation, cognition, and emotion. Here, to optimize the onco-functional balance of glioma surgery, the purpose is to switch toward a connectome-based resection taking account of both relationships between the tumor and critical distributed circuits (especially subcortical pathways) as well as the perpetual instability of the meta-network. Such dynamic in the neural spatiotemporal integration permits functional reallocation leading to neurological recovery after massive resection in structures traditionally thought as "inoperable." This better understanding of connectome increases benefit/risk ratio of surgery (i) by selecting resection in areas deemed "eloquent" according to a localizationist dogma; (ii), conversely, by refining intraoperative awake cognitive mapping and monitoring in so-called non-eloquent areas; (iii) by improving preoperative information, enabling an optimal selection of intrasurgical tasks tailored to the patient's wishes; (iv) by developing an "oncological disconnection surgery"; (v) by defining a personalized multistep surgical strategy adapted to individual brain reshaping potential; and (vi) ultimately by preserving environmentally and socially appropriate behavior, including return to work, while increasing the extent of (possibly repeated) resection(s). Such a holistic vision of neural processing can enhance reliability of connectomal surgery in oncological neuroscience and may also be applied to restorative neurosurgery.


Subject(s)
Brain Neoplasms/surgery , Connectome/methods , Glioma/surgery , Neurosurgical Procedures/methods , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Humans
16.
Hum Brain Mapp ; 42(6): 1794-1804, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33471942

ABSTRACT

The role of massa intermedia (MI) is poorly understood in humans. Recent studies suggest its presence may play a role in normal human neurocognitive function while prior studies have shown the absence of MI correlated with psychiatric disorders. There is growing evidence that MI is likely a midline white matter conduit, responsible for interhemispheric connectivity, similar to other midline commissures. MI presence was identified in an unrelated sample using the Human Connectome Project database. MI structural connectivity maps were created and gray matter target regions were identified using probabilistic tractography of the whole brain. Probabilistic tractography revealed an extensive network of connections between MI and limbic, frontal and temporal lobes as well as insula and pericalcarine cortices. Women compared to men had stronger connectivity via their MI. The presented results support the role of MI as a midline commissure with strong connectivity to the amygdala, hippocampus, and entorhinal cortex.


Subject(s)
Cerebral Cortex , Diffusion Tensor Imaging , Gray Matter , Nerve Net/diagnostic imaging , Nerve Net/pathology , Thalamus , Adult , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Gray Matter/anatomy & histology , Gray Matter/diagnostic imaging , Humans , Sex Factors , Thalamus/anatomy & histology , Thalamus/diagnostic imaging , Young Adult
17.
Brain Imaging Behav ; 15(2): 630-642, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32314199

ABSTRACT

Functional constipation (FCon) is a common functional gastrointestinal disorder (FGID); neuroimaging studies have shown brain functional abnormalities in thalamo-cortical regions in patients with FGID. However, association between FCon and topological characteristics of brain networks remains largely unknown. We employed resting-state functional magnetic resonance imaging (RS-fMRI) and graph theory approach to investigate functional brain topological organization in 42 patients with FCon and 41 healthy controls (HC) from perspectives of global, regional and modular levels. Results showed patients with FCon had a significantly lower normalized clustering coefficient and small-worldness, implying decreased brain functional connectivity. Regions showed altered nodal degree and efficiency mainly located in the thalamus, rostral anterior cingulate cortex (rACC), and supplementary motor area (SMA), which are involved in somatic/sensory, emotional processing and motor-control. For the modular analysis, thalamus, rACC and SMA had an aberrant within-module nodal degree and nodal efficiency, and thalamus-related network exhibited abnormal interaction with the limbic network (amygdala and hippocampal gyrus). Nodal degree in the thalamus was negatively correlated with difficulty of defecation, and nodal degree in the rACC was negatively correlated with sensation of incomplete evacuation. These findings indicated that FCon was associated with abnormalities in the thalamo-cortical network.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Constipation/diagnostic imaging , Humans , Neuroimaging , Thalamus/diagnostic imaging
18.
Cancers (Basel) ; 12(9)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933174

ABSTRACT

Intraoperative direct electrostimulation mapping (DEM) is currently the gold-standard for glioma surgery, since functional-based resection allows an optimization of the onco-functional balance (increased resection with preserved quality of life). Besides intrasurgical awake mapping of conation, cognition, and behavior, preoperative mapping by means of functional neuroimaging (FNI) and transcranial magnetic stimulation (TMS) has increasingly been utilized for surgical selection and planning. However, because these techniques suffer from several limitations, particularly for direct functional mapping of subcortical white matter pathways, DEM remains crucial to map neural connectivity. On the other hand, non-invasive FNI and TMS can be repeated before and after surgical resection(s), enabling longitudinal investigation of brain reorganization, especially in slow-growing tumors like low-grade gliomas. Indeed, these neoplasms generate neuroplastic phenomena in patients with usually no or only slight neurological deficits at diagnosis, despite gliomas involving the so-called "eloquent" structures. Here, data gained from perioperative FNI/TMS mapping methods are reviewed, in order to decipher mechanisms underpinning functional cerebral reshaping induced by the tumor and its possible relapse, (re)operation(s), and postoperative rehabilitation. Heterogeneous spatiotemporal patterns of rearrangement across patients and in a single patient over time have been evidenced, with structural changes as well as modifications of intra-hemispheric (in the ipsi-lesional and/or contra-lesional hemisphere) and inter-hemispheric functional connectivity. Such various fingerprints of neural reconfiguration were correlated to different levels of cognitive compensation. Serial multimodal studies exploring neuroplasticity might lead to new management strategies based upon multistage therapeutic approaches adapted to the individual profile of functional reallocation.

19.
Front Hum Neurosci ; 14: 315, 2020.
Article in English | MEDLINE | ID: mdl-32848678

ABSTRACT

For a long time, the relevance of the information provided by direct electrostimulation (DES) for mapping brain functions was debated. Recently, major advances in intraoperative DES for guiding resection of cerebral tumors in awake patients enabled the validation of this method and its increased utilization in basic neurosciences. Indeed, in addition to the cortical stimulation used for many decades in epilepsy surgery, axonal mapping was developed thanks to DES of the white matter tracts, giving original insights into the neural connectivity. Moreover, functional results collected during intrasurgical mapping have been correlated with neuropsychological performances before and after DES-guided resection, and with perioperative neuroimaging data. Thus, it was evidenced that DES offers the unique opportunity to identify both cortical and subcortical structures critical for cerebral functions. Here, the first aim is to propose a three-level model of DES-generated functional disruption, able to explain the behavioral consequences elicited during awake surgery, i.e., (i) DES of an input/output unimodal (e.g., somatosensory or motor) network inducing "positive" responses (as involuntary movement); (ii) DES of a distributed specialized network inducing a within-system disruption leading to specific "negative" disorders (e.g., exclusive language deficit with no other disorders); (iii) DES generating an inter-system disruption leading to more complex behavioral disturbances (e.g., the inability to perform dual-task while each function can be performed separately). Second, in light of this model, original findings gained from DES concerning the human connectome, complementary to those provided by functional neuroimaging (FNI), are reviewed. Further longitudinal multimodal investigations are needed to explore neuroplasticity mechanisms.

20.
Hum Brain Mapp ; 41(14): 3855-3866, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32592228

ABSTRACT

This study explored the topological characteristics of brain white matter structural networks in patients with Paroxysmal Kinesigenic Dyskinesia (PKD), and the potential influence of the brain network stability gene PRRT2 on the structural connectome in PKD. Thirty-five PKD patients with PRRT2 mutations (PKD-M), 43 PKD patients without PRRT2 mutations (PKD-N), and 40 demographically-matched healthy control (HC) subjects underwent diffusion tensor imaging. Graph theory and network-based statistic (NBS) approaches were performed; the topological properties of the white matter structural connectome were compared across the groups, and their relationships with the clinical variables were assessed. Both disease groups PKD-M and PKD-N showed lower local efficiency (implying decreased segregation ability) compared to the HC group; PKD-M had longer characteristic path length and lower global efficiency (implying decreased integration ability) compared to PKD-N and HC, independently of the potential effects of medication. Both PKD-M and PKD-N had decreased nodal characteristics in the left thalamus and left inferior frontal gyrus, the alterations being more pronounced in PKD-M patients, who also showed abnormalities in the left fusiform and bilateral middle temporal gyrus. In the connectivity characteristics assessed by NBS, the alterations were more pronounced in the PKD-M group versus HC than in PKD-N versus HC. As well as the white matter alterations in the basal ganglia-thalamo-cortical circuit related to PKD with or without PRRT2 mutations, findings in the PKD-M group of weaker small-worldness and more pronounced regional disturbance show the adverse effects of PRRT2 gene mutations on brain structural connectome.


Subject(s)
Diffusion Tensor Imaging , Dystonia/pathology , Membrane Proteins/genetics , Nerve Net/pathology , Nerve Tissue Proteins/genetics , Prefrontal Cortex/pathology , Thalamus/pathology , Adolescent , Adult , Child , Dystonia/diagnostic imaging , Female , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Thalamus/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL