Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Phytomedicine ; 110: 154651, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36634380

ABSTRACT

BACKGROUND: Chronic ulcerative colitis (UC) is a lifelong disease, patients with chronic UC have a high prevalence of common mental disorders. The increasing interest in the role of gut-brain axis is seen in inflammatory bowel diseases. PURPOSE: Corylin is a representative flavonoid compound isolated from the Psoraleae Fructus. This study aimed to identify the effects and mechanism of corylin on the inflammation interactions and 5-HT synthesis between the gut and brain in chronic UC. METHODS: Dextran sulfate sodium (DSS) induced chronic UC mouse model was established to assess the therapeutic effect of corylin on chronic UC symptoms. The expression of inflammatory cytokines was detected in the colon and brain. The expression of tight junction (TJ) proteins of intestinal mucosal barrier and blood-brain barrier (BBB) and the ionized calcium-binding adaptor molecule 1 (Iba1) in the hippocampus were determined by western blotting and immunofluorescence staining. In addition, several tryptophan (Trp) metabolites and related neurotransmitters in faeces, colon, serum, and brain were detected by UPLC-MS/MS. The interaction between corylin and 5-hydroxytryptophan decarboxylase (5-HTPDC) was performed by molecular docking and surface plasmon resonance (SPR). Finally, the changes of gut microbiota composition were analyzed by 16S rRNA sequencing. RESULTS: Corylin significantly alleviated colitis symptoms and inhibited inflammatory response in the colon and brain of DSS-induced chronic UC mice. The TJ proteins of intestinal mucosal barrier and BBB were improved and the expression of Iba1 in the hippocampus was normalized after corylin treatment. In addition, corylin treatment increased the expression of neurotransmitters in the brain, especially 5-hydroxytryptamine (5-HT) and 5-hydroxytryptophan (5-HTP), but the expression of 5-HT in the colon was inhibited. Further study firstly proved that corylin could bind to the 5-HTDPC, and then inhibit the expression of 5-HTDPC and VB6, resulting in the 5-HT reduction and 5-HTP accumulation in the colon. Moreover, the intake of corylin transformed the diversity and composition of intestinal microbiota, Bacteroides, Escherichia-Shigella, and Turicibacter were decreased but Dubosiella, Enterorhabdus, and Candidatus_Stoquefichus were increased. CONCLUSION: Corylin administration ameliorated DSS-induced colitis and inhibited intestinal inflammation and neuroinflammation via regulating the inflammation interactions across gut-brain axis and increasing 5-HTP generation in the colon.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , 5-Hydroxytryptophan/pharmacology , Brain-Gut Axis , Serotonin , Chromatography, Liquid , Molecular Docking Simulation , RNA, Ribosomal, 16S , Tandem Mass Spectrometry , Colon , Flavonoids , Colitis/chemically induced , Colitis/drug therapy , Inflammation , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL
2.
Phytomedicine ; 110: 154627, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36610351

ABSTRACT

BACKGROUND: Lung cancer is characterized by high-risk and high mortality, among which non-small cell lung cancer (NSCLC) conquers a dominant position. Previous studies have reported that corylin has anti-inflammatory, anti-oxidant, and anti-tumor effects; however, its role in NSCLC cells remains unclear. HYPOTHESIS: Corylin inhibits the progression of NSCLC cells. METHODS: A lentivector NF-κB luciferase reporter was constructed by molecular cloning. Corylin was screened and identified as an NF-κB pathway inhibitor by luciferase reporter assay. Corylin inhibited the expression of NF-κB downstream genes, which was detected by qRT-PCR. The effect of corylin on NSCLC cells was detected by colony formation assay, cell apoptosis, cell proliferation, in vitro invasion, and cell scratch assay. Corylin inhibited p65 nuclear translocation and was detected by molecular docking, immunofluorescence assay, and Western blot analysis. RESULTS: We constructed a lentiviral expression vector, containing an NF-κB luciferase reporter and established a stable A549 cell line for its expression. Using this cell line, corylin was screened and identified as an NF-κB pathway inhibitor. It was found that corylin inhibited the expression of NF-κB downstream genes and inhibited the proliferation and migration of NSCLC cells. Meanwhile, it was also found that corylin significantly reversed the increased proliferation of NSCLC cell lines induced by p65 overexpression. Molecular docking analysis showed that corylin could bind to p65 by hydrogen bonding. Further study showed that corylin inhibited the NF-κB signaling pathway by blocking p65 nuclear translocation. CONCLUSIONS: Our study screened and identified corylin as an NF-κB inhibitor and elucidated the molecular mechanism by which corylin inhibits the growth of NSCLC cells. The present study provides a novel strategy for improving the prognosis and treatment of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , NF-kappa B/metabolism , Lung Neoplasms/pathology , Molecular Docking Simulation , Cell Line, Tumor , Signal Transduction , I-kappa B Proteins/metabolism , Cell Proliferation
3.
Infect Disord Drug Targets ; 23(1): e250822208005, 2023.
Article in English | MEDLINE | ID: mdl-36028973

ABSTRACT

BACKGROUND: Flavonoidal class phytochemicals are the best examples of secondary metabolite found in different natural sources, including 'fruits, grains, vegetables, broccoli, tea, berries, wine, strawberries, apples, grapes, lettuce, and citrus fruit. Natural products are a rich source of flavonoidal compounds present in our diet source. OBJECTIVE: Flavonoidal class chemicals can be subcategorized into chalcones, isoflavone, flavonols, catechin, flavones, flavanones, and anthocyanidin with respect to their basic chemical structures. Psoralea corylifolia L. belongs to the family Fabaceae and is an herbal medicine used in traditional Chinese Medicine for the treatment of inflammatory disorders, bacterial infections, and cancerous disorders. METHODS: In the present work, scientific data have been collected from different databases and analyzed in order to find the therapeutic potential of corylin in medicine. Different scientific databases such as Google, Scopus, PubMed, Science Direct, etc., have been searched to collect the needed scientific information on corylin. Scientific information on corylin has been collected in the present work in order to know the pharmacological activities and medicinal uses of corylin in the scientific fields. However, analytical techniques data of corylin have also been collected and analyzed for standardization of Psoralea corylifolia and other medicinal plants. RESULTS: Scientific data analysis of research works revealed the medicinal importance of Psoralea corylifolia and its important phytoconstituents corylin in medicine. Scientific data analysis revealed that corylin is a flavonoidal class phytochemical found in the nuts of Psoralea corylifolia L. Biological importance of corylin in bone differentiation, bone growth, and osteoporosis has been proven in this scientific research work. The anti-inflammatory, anti-oxidant, and antitumor activity of corylin has been also described in this medical literature. The biological importance of corylin in hyperlipidemia, insulin resistance, atherosclerosis, hepatocellular carcinoma, and neurodisorders have also been presented in this work. CONCLUSION: Scientific data analysis revealed the biological importance and therapeutic potential of corylin in the field of medicine.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Plants, Medicinal , Psoralea , Psoralea/chemistry , Plants, Medicinal/chemistry , Fruit/chemistry
4.
Phytother Res ; 36(8): 3276-3294, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35821646

ABSTRACT

Oxidative stress damage can lead to premature skin aging or age-related skin disorders. Therefore, strategies to improve oxidative stress-induced aging are needed to protect the skin and to treat skin diseases. This study aimed to determine whether the flavonoid corylin derived from Psoralea corylifolia can prevent UV-induced skin aging and if so, to explore the potential molecular mechanisms. We found that corylin potently blocked UV-induced skin photoaging in mice by reducing oxidative stress and increasing the nuclear expression of nuclear factor-erythroid factor 2-related factor 2 Nrf2. We also found that corylin stimulated Nrf2 translocation into the nucleus and increased the delivery of its target antioxidant genes together with Kelch-like ECH-associated protein 1 (Keap1) to dissociate Nrf2. These findings indicate that corylin could prevent skin aging by inhibiting oxidative stress via Keap1-Nrf2 in mouse cells. Thus, Nrf2 activation might be a therapeutic target for preventing skin aging or skin diseases caused by aging. Our findings also provided evidence that warrants the further investigation of plant ingredients to facilitate the discovery of novel therapies targeting skin aging.


Subject(s)
Psoralea , Skin Aging , Animals , Defense Mechanisms , Flavonoids , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress
5.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805517

ABSTRACT

Corylin, a flavonoid isolated from the fruit of Psoralea corylifolia, has an osteogenic effect on osteoblasts in vitro and bone micromass ex vivo. However, the effect and mechanism of corylin in regulating osteoclastogenesis remain unknown. By using murine bone marrow macrophages as the osteoclast precursor, corylin was found to inhibit the receptor activator of nuclear factor (NF) κB ligand (RANKL)-induced osteoclast differentiation via down-regulating osteoclastic marker genes. In parallel, F-actin formation and osteoclast migration were diminished in corylin-treated cultured osteoclasts, and subsequently the expressions of osteoclastic proteins were suppressed: the suppression of protein expression was further illustrated by transcriptomic analysis. Furthermore, corylin inhibited the nuclear translocation of p65, giving rise to a restraint in osteoclastic differentiation through the attenuation of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor of activated T cells c1 (NFATc1). There was no obvious change in apoptosis when the RANKL-induce osteoclasts were cultured in the presence of corylin. The finding supports the potential development of corylin as an osteoclast inhibitor against osteoporosis.


Subject(s)
Flavonoids/pharmacology , Osteoclasts/cytology , Osteoclasts/drug effects , Osteogenesis/drug effects , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Drug Evaluation, Preclinical , Female , Gene Expression Profiling , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Osteoclasts/physiology , Osteogenesis/physiology , Phagocytosis/drug effects , RANK Ligand/genetics , RAW 264.7 Cells
6.
Phytomedicine ; 80: 153366, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33080566

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide. Corylin is an isoflavone extracted from Cullen corylifolium (L.) Medik., which is widely used anti-inflammatory and anticancer in Asian countries. Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and development of CRC. PURPOSE: To analyze the antitumor activity of corylin in CRC and to elucidate its molecular mechanisms of action. METHODS: The human CRC cell lines HCT116, RKO, and SW480 and immunodeficient mice were used as models to study the antitumor effect of corylin. The potent anti-proliferative, anti-migration and proapoptotic effects of corylin were observed by cell viability, colony formation assays, wound-healing migration assay, and cell apoptosis assay. Immunostaining analysis and western blot analysis revealed inhibition of the STAT3 signaling axis. RESULTS: We found that corylin could significantly reduce the viability and stimulate apoptosis in human CRC cells in a dose-dependent manner. Corylin decreased the expression levels of P-STAT3 and STAT3 target proteins, such as myeloid cell leukemia-1(MCL-1), Survivin, VEGF and B-cell lymphoma 2 (BCL-2). It also upregulated the expression levels of the proapoptotic proteins BCL-2-associated X protein (BAX) and Cl-caspase 3. Moreover, corylin reduced the nuclear localization of STAT3. Furthermore, corylin inhibited the growth of the tumor in CRC mouse models. CONCLUSIONS: Our findings provide convincing results that could support the role of corylin in the treatment of CRC through inhibiting the STAT3 pathway. It is conceivable that corylin should be further explored as a unique STAT3 inhibitor in antitumor therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Colorectal Neoplasms/drug therapy , Flavonoids/pharmacology , STAT3 Transcription Factor/metabolism , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Fabaceae/chemistry , Female , Humans , Mice, Inbred BALB C , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
7.
BMC Complement Altern Med ; 18(1): 221, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30107806

ABSTRACT

BACKGROUND: Inflammation has been found to be associated with many neurodegenerative diseases, including Parkinson's and dementia. Attenuation of microglia-induced inflammation is a strategy that impedes the progression of neurodegenerative diseases. METHODS: We used lipopolysaccharide (LPS) to simulate murine microglia cells (BV2 cells) as an experimental model to mimic the inflammatory environment in the brain. In addition, we examined the anti-inflammatory ability of corylin, a main compound isolated from Psoralea corylifolia L. that is commonly used in Chinese herbal medicine. The production of nitric oxide (NO) by LPS-activated BV2 cells was measured using Griess reaction. The secretion of proinflammatory cytokines including tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) by LPS-activated BV2 cells was analyzed using enzyme-linked immunosorbent assay (ELISA). The expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, IL-1ß and mitogen-activated protein kinases (MAPKs) in LPS-activated BV2 cells was examined by Western blot. RESULTS: Our experimental results demonstrated that corylin suppressed the production of NO and proinflammatory cytokines by LPS-activated BV2 cells. In addition, corylin inhibited the expression of iNOS and COX-2, attenuated the phosphorylation of ERK, JNK and p38, decreased the expression of NLRP3 and ASC, and repressed the activation of caspase-1 and IL-1ß by LPS-activated BV2 cells. CONCLUSION: Our results indicate the anti-inflammatory effects of corylin acted through attenuating LPS-induced inflammation and inhibiting the activation of NLRP3 inflammasome in LPS-activated BV2 cells. These results suggest that corylin might have potential in treating brain inflammation and attenuating the progression of neurodegeneration diseases.


Subject(s)
Flavonoids/pharmacology , Inflammasomes/drug effects , Microglia/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cell Survival/drug effects , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/adverse effects , Mice , Microglia/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL