Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cell Metab ; 36(2): 377-392.e11, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38194970

ABSTRACT

Recent studies have shown that the hypothalamus functions as a control center of aging in mammals that counteracts age-associated physiological decline through inter-tissue communications. We have identified a key neuronal subpopulation in the dorsomedial hypothalamus (DMH), marked by Ppp1r17 expression (DMHPpp1r17 neurons), that regulates aging and longevity in mice. DMHPpp1r17 neurons regulate physical activity and WAT function, including the secretion of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), through sympathetic nervous stimulation. Within DMHPpp1r17 neurons, the phosphorylation and subsequent nuclear-cytoplasmic translocation of Ppp1r17, regulated by cGMP-dependent protein kinase G (PKG; Prkg1), affect gene expression regulating synaptic function, causing synaptic transmission dysfunction and impaired WAT function. Both DMH-specific Prkg1 knockdown, which suppresses age-associated Ppp1r17 translocation, and the chemogenetic activation of DMHPpp1r17 neurons significantly ameliorate age-associated dysfunction in WAT, increase physical activity, and extend lifespan. Thus, these findings clearly demonstrate the importance of the inter-tissue communication between the hypothalamus and WAT in mammalian aging and longevity control.


Subject(s)
Aging , Longevity , Mice , Animals , Neurons/metabolism , Synaptic Transmission , Adipose Tissue/metabolism , Hypothalamus/metabolism , Dorsomedial Hypothalamic Nucleus/metabolism , Mammals/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/metabolism
2.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982300

ABSTRACT

Colorectal cancer (CRC) is responsible for a notable rise in the overall mortality rate. Obesity is found to be one of the main factors behind CRC development. Andrographis paniculata is a herbaceous plant famous for its medicinal properties, particularly in Southeast Asia for its anti-cancer properties. This study examines the chemopreventive impact of A. paniculata ethanolic extract (APEE) against a high-fat diet and 1,2-dimethylhydrazine-induced colon cancer in Sprague Dawley rats. Sprague Dawley rats were administered 1,2-dimethylhydrazine (40 mg/kg, i.p. once a week for 10 weeks) and a high-fat diet (HFD) for 20 weeks to induce colorectal cancer. APEE was administered at 125 mg/kg, 250 mg/kg, and 500 mg/kg for 20 weeks. At the end of the experiment, blood serum and organs were collected. DMH/HFD-induced rats had abnormal crypts and more aberrant crypt foci (ACF). APEE at a dose of 500 mg/kg improved the dysplastic state of the colon tissue and caused a 32% reduction in the total ACF. HFD increased adipocyte cell size, while 500 mg/kg APEE reduced it. HFD and DMH/HFD rats had elevated serum insulin and leptin levels. Moreover, UHPLC-QTOF-MS analysis revealed that APEE was rich in anti-cancer phytochemicals. This finding suggests that APEE has anti-cancer potential against HFD/DMH-induced CRC and anti-adipogenic and anti-obesity properties.


Subject(s)
Aberrant Crypt Foci , Anticarcinogenic Agents , Colonic Neoplasms , Rats , Animals , Rats, Sprague-Dawley , Andrographis paniculata , 1,2-Dimethylhydrazine/toxicity , Diet, High-Fat/adverse effects , Plant Extracts/adverse effects , Colonic Neoplasms/prevention & control , Anticarcinogenic Agents/therapeutic use , Obesity/drug therapy , Obesity/etiology , Carcinogens
3.
Mol Neurobiol ; 60(1): 171-182, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36251233

ABSTRACT

We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) in the ventromedial hypothalamus (VMH) enhances feeding during the dark cycle and after fasting, and inhibits feeding during the light cycle. On the other hand, galanin is highly expressed in the hypothalamus and has been reported to be involved in feeding regulation. In this study, we investigated the involvement of the VMH-PACAP to the dorsomedial hypothalamus (DMH)-galanin signaling in the regulation of feeding. Galanin expression in the hypothalamus was significantly increased with fasting, but this increment was canceled in PACAP-knockout (KO) mice. Furthermore, overexpression of PACAP in the VMH increased the expression of galanin, while knockdown (KD) of PACAP in the VMH decreased the expression of galanin, indicating that the expression of galanin in the hypothalamus might be regulated by PACAP in the VMH. Therefore, we expressed the synaptophysin-EGFP fusion protein (SypEGFP) in PACAP neurons in the VMH and visualized the neural projection to the hypothalamic region where galanin was highly expressed. A strong synaptophysin-EGFP signal was observed in the DMH, indicating that PACAP-expressing cells of the VMH projected to the DMH. Furthermore, galanin immunostaining in the DMH showed that galanin expression was weak in PACAP-KO mice. When galanin in the DMH was knocked down, food intake during the dark cycle and after fasting was decreased, and food intake during the light cycle was increased, as in PACAP-KO mice. These results indicated that galanin in the DMH may regulate the feeding downstream of PACAP in the VMH.


Subject(s)
Hypothalamus , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Mice , Appetite Regulation , Galanin/metabolism , Hypothalamus/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Synaptophysin/metabolism
4.
Environ Toxicol ; 37(9): 2153-2166, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35567572

ABSTRACT

1,2-Dimethylhydrazine (DMH), a colon-specific environmental toxicant is one among the carcinogen responsible for the cause of colon cancer. The present study was designed to evaluate the protective effect of Hesperetin (HST) against colon toxicity induced by DMH in Wistar rats. HST, a flavonoid widely found in citrus fruits possesses several biological activities including anti-microbial, anti-oxidant properties among others. A single dose of DMH (40 mg/kg body weight) was administered subcutaneously on 1st day for induction of colon toxicity followed by oral treatment with HST at a dose of 20 mg/kg bodyweight for 14 consecutive days. DMH administration leads to excessive ROS generation, resulting in an imbalance in redox homeostasis and causing membrane lipid peroxidation, which is also partly due to the decrease in the level of tissue antioxidant machinery. Our result showed HST significantly ameliorates DMH-induced lipid peroxidation and also substantially increases the activity/level of various anti-oxidant proteins (GR, GPx, GST, GSH, and SOD). HST was also found to reduce the expression of inflammatory proteins (TNF-α, IL-6, i-NOS, COX-2, NF-kB-p65), goblet cell disintegration as well as mucin depletion (sulfo and sialomucin) in the colon that was found to be elevated upon administration of DMH. Our histological results further provide confirmation of the protective role of HST against DMH-induced pathological alterations. The results of the present study demonstrate supplementation of HST is beneficial in ameliorating DMH-induced toxicity by suppressing oxidative stress, inflammation, goblet cell disintegration as well mucin depletion in the colon of Wistar rats.


Subject(s)
Colonic Neoplasms , Hesperidin , Oxidative Stress , 1,2-Dimethylhydrazine/toxicity , Animals , Antioxidants/metabolism , Catalase/metabolism , Colon/metabolism , Colonic Neoplasms/pathology , Glutathione/metabolism , Hesperidin/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Mucins/metabolism , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
5.
Endocrinology ; 163(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34953135

ABSTRACT

Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to gonadotropin-releasing hormone (GnRH) neurons for the coordinated release of gonadotropins, estrous cyclicity, and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are 2 distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1AVPV/PeN neurons but decreases its expression in Kiss1ARH neurons. Also, Kiss1ARH neurons coexpress glutamate and Kiss1AVPV/PeN neurons coexpress gamma aminobutyric acid (GABA), both of which are upregulated by E2 in females. Also, Kiss1ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1ARH neurons project to and excite the anorexigenic proopiomelanocortin neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide neurons, highlighting their role in regulating feeding behavior. Kiss1ARH and Kiss1AVPV/PeN neurons also project to the preautonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.


Subject(s)
Homeostasis/physiology , Hypothalamus/physiology , Kisspeptins/physiology , Neurons/physiology , Animals , Body Temperature Regulation , Brain Chemistry , Energy Metabolism/physiology , Female , Gonadotropin-Releasing Hormone/metabolism , Humans , Kisspeptins/analysis , Kisspeptins/genetics , Luteinizing Hormone/metabolism , RNA, Messenger/analysis , Reproduction/physiology
6.
Food Chem Toxicol ; 154: 112287, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34058233

ABSTRACT

Since dietary factors are thought to be responsible for high colon cancer risk, we investigated the chemopreventive effect of jabuticaba seed extract (LJE) by administering yogurt with or without LJE against 1,2 dimethyl hydrazine (DMH)-induced colon carcinogenesis in rats. Results showed that LJE contained a total phenolic content of 57.16 g/100 g of seed extract in which 7.67 and 10.09 g/100 g represented total flavonoids and ellagitannins, respectively. LJE protected DNA and human LDL against induced in vitro oxidation, which was associated with the ellagitannin content and with the free-radical scavenging and reducing capacities. LJE alone had a non-clastogenicity/aneugenicity property, but in combination with cisplatin, it enhanced the chromosome aberrations in cancer cells. In colon cancer-induced rats, yogurt with or without LJE caused a reduction in pro-inflammatory parameters, decreased the RNA expression of antiapoptotic cytokines and increased the expression of proapoptotic cytokines. Moreover, LJE attenuated colon cancer initiation and progression by decreasing aberrant crypt foci and LJE recovered the gut microbiome. Together, this evidence suggests that LJE provides chemopreventive protection against colon cancer development by reducing inflammation and increasing proapoptotic pathways.


Subject(s)
1,2-Dimethylhydrazine/toxicity , Carcinogens/toxicity , Colonic Neoplasms/pathology , Gastrointestinal Microbiome/drug effects , Hydrolyzable Tannins/isolation & purification , Hydrolyzable Tannins/pharmacology , Inflammation/prevention & control , Myrtaceae/embryology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Seeds/chemistry , Animals , Chromosome Aberrations , Colonic Neoplasms/chemically induced , Colonic Neoplasms/metabolism , Colonic Neoplasms/microbiology , Male , Mutagenicity Tests , Precancerous Conditions/chemically induced , Precancerous Conditions/pathology , Rats , Rats, Wistar
7.
Life Sci ; 253: 117584, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32220623

ABSTRACT

Accumulating recent studies have demonstrated the preventive and therapeutic effects of polyphonic compounds such as quercetin in colorectal cancer. Therefore, we aimed to evaluate the underlying mechanisms for positive effects of quercetin in rats with 1,2-dimethylhydrazine (DMH)- induced colorectal cancer. For this purpose, male Wistar rats were classified as 6 groups, including group 1 without any intervention, group 2 as quercetin received rats (50 mg/kg), groups 3 as DMH received rats (20 mg/kg) group 4-6 DMH and quercetin received rats. DNA damage, DNA repair, the expression levels and activities of enzymic antioxidants, non-enzymic antioxidants, and NRF2/Keap1 signaling were evaluated in colon tissues of all groups. Our results showed significant suppression of DNA damage and induction of DNA repair in DMH + Quercetin groups, particularly in entire-period in comparison to other groups (p < .05). The expression levels and activities of enzymic and non-enzymic antioxidants were increased in DMH + Quercetin groups (p < .05). Lipid and protein peroxidation were significantly suppressed in DMH + Quercetin groups (p < .05). In addition, quercetin also modulated NRF2/Keap1 signaling and its targets, detoxifying enzymes in DMH + Quercetin groups. Our finding demonstrated that quercetin supplementation effectively reversed DMH-mediated oxidative stress and DNA damage through targeting NRF2/Keap1 signaling pathway.


Subject(s)
1,2-Dimethylhydrazine/metabolism , Carcinogens/metabolism , Colonic Neoplasms/drug therapy , NF-E2-Related Factor 2/metabolism , Quercetin/chemistry , 1,2-Dimethylhydrazine/toxicity , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Carcinogens/chemistry , Carcinogens/toxicity , Catalase/metabolism , DNA Damage/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Lipid Peroxidation/drug effects , Lipids/chemistry , Male , Neoplasms, Experimental , Oxidative Stress/drug effects , Quercetin/metabolism , Quercetin/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species , Signal Transduction
8.
Toxicol Rep ; 5: 977-987, 2018.
Article in English | MEDLINE | ID: mdl-30319939

ABSTRACT

Orientin, a c- glycosyl flavonoid found copiously in roobios tea and various medicinal plants is well known for its antioxidant, anti-inflammatory, and antitumor effects. The present study aims to investigate the anti-cancer efficacy of orientin on 1,2 dimethyl hydrazine induced colonic aberrant crypt foci (ACF) and cell proliferation in Wistar rats. Rats were randomly divided into six groups and fed with high fat diet. Group 1 left as untreated control. Group 2 administered with DMH (20 mg/kg body weight) for initial 4 weeks and left untreated. Group 3 received orientin (10 mg/kg body weight) alone for the entire period. Group 4 received orientin along with DMH for initial 4 weeks and left untreated; Group 5 administered DMH for initial 4 weeks and treated with orientin for remaining 12 weeks; Group 6 administered DMH and treated with orientin throughout the entire period. Our preclinical findings suggest that the administration of orientin decreases the occurrence of DMH induced colonic polyps and aberrant crypt foci, augments antioxidant defense and altered the activities of drug metabolizing phase I and phase II enzymes in colonic and hepatic tissues and thereby ensuring the detoxification of carcinogen. Furthermore, orientin attenuates the aberrant crypt foci formation and reinstates the DMH induced cell proliferation, as evident from the AgNORs staining of colonic tissues of experimental rats. Thus, our study emphasizes that orientin may prevent DMH induced precancerous lesions and proven to be a potent antioxidant and antiproliferative agent.

9.
Development ; 145(21)2018 11 02.
Article in English | MEDLINE | ID: mdl-30291164

ABSTRACT

Sonic hedgehog (Shh) plays well characterized roles in brain and spinal cord development, but its functions in the hypothalamus have been more difficult to elucidate owing to the complex neuroanatomy of this brain area. Here, we use fate mapping and conditional deletion models in mice to define requirements for dynamic Shh activity at distinct developmental stages in the tuberal hypothalamus, a brain region with important homeostatic functions. At early time points, Shh signaling regulates dorsoventral patterning, neurogenesis and the size of the ventral midline. Fate-mapping experiments demonstrate that Shh-expressing and -responsive progenitors contribute to distinct neuronal subtypes, accounting for some of the cellular heterogeneity in tuberal hypothalamic nuclei. Conditional deletion of the hedgehog transducer smoothened (Smo), after dorsoventral patterning has been established, reveals that Shh signaling is necessary to maintain proliferation and progenitor identity during peak periods of hypothalamic neurogenesis. We also find that mosaic disruption of Smo causes a non-cell autonomous gain in Shh signaling activity in neighboring wild-type cells, suggesting a mechanism for the pathogenesis of hypothalamic hamartomas, benign tumors that form during hypothalamic development.


Subject(s)
Hedgehog Proteins/metabolism , Hypothalamus/embryology , Hypothalamus/metabolism , Signal Transduction , Animals , Arcuate Nucleus of Hypothalamus/embryology , Arcuate Nucleus of Hypothalamus/metabolism , Body Patterning , Cell Nucleus/metabolism , Cell Proliferation , Embryo, Mammalian/metabolism , Mice , Neurogenesis , Neurons/metabolism , Smoothened Receptor/metabolism , Time Factors , Zinc Finger Protein GLI1/metabolism
10.
Mol Metab ; 14: 130-138, 2018 08.
Article in English | MEDLINE | ID: mdl-29914853

ABSTRACT

OBJECTIVE: To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. METHODS: We generated new mouse lines deleted for LepRb in ARC GhrhCre neurons or in Htr2cCre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. RESULTS: The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. CONCLUSIONS: Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH.


Subject(s)
Energy Metabolism , Hypothalamus/cytology , Neurons/metabolism , Obesity/metabolism , Receptors, Leptin/genetics , Animals , Female , Gene Deletion , Hypothalamus/embryology , Hypothalamus/metabolism , Male , Mice , Neurons/classification , Neurons/cytology , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Receptors, Leptin/metabolism
11.
Biomed Pharmacother ; 98: 600-608, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29289834

ABSTRACT

Intraepithelial lymphocytes (IELs) impart a crucial role in maintaining intestinal homeostasis, yet their role in colon cancer pathogenesis remains unknown. Here, we posited that the modulation of intestinal immune response via dietary interventions might be an implacable strategy in restraining colon carcinoma. In the above context, we studied the effect of differential ratios of fish oil (FO) and corn oil (CO) on the gut immune response in experimentally induced colon cancer. Male Wistar rats were divided into six groups: Group I obtained purified diet while Groups II and III were fed on the diet supplemented with differential ratios of FO and CO i.e. 1:1 and 2.5:1, respectively. The groups were further subdivided into control and carcinogenic group, treated with ethylenediaminetetraacetic acid (EDTA) or N,N'-dimethylhydrazine dihydrochloride (DMH), respectively. Initiation phase comprised the animals sacrificed 48 h after the last injection whereas, the post -initiation phase was constituted by animals sacrificed 12 weeks after the treatment regimen. CD8+ T cells, CD8/αß TCR cells, dendritic cells increased significantly on treatment with DMH as compared to control. However, on treatment with differential ratios of FO and CO these cells decreased significantly. The intracellular cytokine i.e. interferon gamma (IFN-γ) and cytotoxic granules component i.e Perforin and Granzyme decreased significantly in the initiation phase but in the post-initiation phase IFN-γ and Perforin increased considerably on carcinogen treatment as compared to the control group. On treatment with FO and CO in the initiation phase the IFN-γ, Perforin and Granzyme expression increased significantly. However, in the post-initiation phase treatment with differential ratios of FO and CO led to a significant decrease in the IFN-γ, Perforin and increase in Granzyme was observed in these groups. Altogether, FO supplementation appeared to activate the immune response that may further attenuate the process of carcinogenesis, in a dose and time-dependent manner.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Carcinoma/drug therapy , Colonic Neoplasms/drug therapy , Corn Oil/pharmacology , Dendritic Cells/drug effects , Fish Oils/pharmacology , Intraepithelial Lymphocytes/drug effects , Animals , CD8-Positive T-Lymphocytes/metabolism , Carcinogenesis/drug effects , Carcinoma/metabolism , Colon/drug effects , Colon/metabolism , Colonic Neoplasms/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Dendritic Cells/metabolism , Interferon-gamma/metabolism , Intraepithelial Lymphocytes/metabolism , Male , Rats , Rats, Wistar
12.
Mol Metab ; 6(5): 393-405, 2017 05.
Article in English | MEDLINE | ID: mdl-28462074

ABSTRACT

OBJECTIVE: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. METHODS: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR). The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. RESULTS: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. CONCLUSION: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.


Subject(s)
Glucose/metabolism , Hypothalamus/metabolism , Liver/metabolism , Neurons/metabolism , Receptors, Leptin/metabolism , Receptors, Somatotropin/metabolism , Animals , Hypothalamus/cytology , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction
13.
Mol Metab ; 6(4): 366-373, 2017 04.
Article in English | MEDLINE | ID: mdl-28377875

ABSTRACT

OBJECTIVE: Obesity and high fat diet (HFD) consumption in rodents is associated with hypothalamic inflammation and reactive gliosis. While neuronal inflammation promotes HFD-induced metabolic dysfunction, the role of astrocyte activation in susceptibility to hypothalamic inflammation and diet-induced obesity (DIO) remains uncertain. METHODS: Metabolic phenotyping, immunohistochemical analyses, and biochemical analyses were performed on HFD-fed mice with a tamoxifen-inducible astrocyte-specific knockout of IKKß (GfapCreERIkbkbfl/fl, IKKß-AKO), an essential cofactor of NF-κB-mediated inflammation. RESULTS: IKKß-AKO mice with tamoxifen-induced IKKß deletion prior to HFD exposure showed equivalent HFD-induced weight gain and glucose intolerance as Ikbkbfl/fl littermate controls. In GfapCreERTdTomato marker mice treated using the same protocol, minimal Cre-mediated recombination was observed in the mediobasal hypothalamus (MBH). By contrast, mice pretreated with 6 weeks of HFD exposure prior to tamoxifen administration showed substantially increased recombination throughout the MBH. Remarkably, this treatment approach protected IKKß-AKO mice from further weight gain through an immediate reduction of food intake and increase of energy expenditure. Astrocyte IKKß deletion after HFD exposure-but not before-also reduced glucose intolerance and insulin resistance, likely as a consequence of lower adiposity. Finally, both hypothalamic inflammation and astrocytosis were reduced in HFD-fed IKKß-AKO mice. CONCLUSIONS: These data support a requirement for astrocytic inflammatory signaling in HFD-induced hyperphagia and DIO susceptibility that may provide a novel target for obesity therapeutics.


Subject(s)
Astrocytes/metabolism , Hypothalamus/metabolism , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Obesity/metabolism , Signal Transduction , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Gliosis , Hypothalamus/pathology , I-kappa B Kinase/genetics , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics
14.
Biomed Pharmacother ; 82: 90-7, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27470343

ABSTRACT

Cancer cells are more susceptible to metabolic perturbations due to impaired electron transport chain (ETC) that promote uncontrolled proliferation. Mitochondria play a pivotal role in bioenergetics and apoptosis, hence are considered as a promising target in tumor cell eradication. Therefore, the present study is designed to elucidate chemopreventive action of fish oil (FO) in combination with corn oil (CO) on mitochondria in colorectal cancer (CRC). Male Wistar rats were divided into groups depending on dietary regimen-Control group, FO+CO(1:1) and FO+CO(2.5:1). These groups were further subdivided depending on whether these received a weekly intraperitoneal injection of ethylenediamine tetra-acetic acid (EDTA) or N,N-dimethylhydrazine dihydrochloride (DMH) for a period of 4 weeks. The animals sacrificed 48h and 16 weeks after EDTA/DMH treatment constituted initiation and post-initiation phase respectively. The structural and functional alterations in mitochondria were evaluated using transmission electron microscopy (TEM) and by assaying electron transport chain (ETC) enzymes. Mitochondrial lipid composition and cholesterol levels were also assessed. DMH treatment led to mitochondrial degeneration, disrupted cristae and a significant decrease in ETC complexes suggestive of metabolic reprogramming. Moreover, an increase in cholesterol and cardiolipin (CL) levels in post-initiation phase led to evasion of apoptosis. FO in both the ratios resulted in stabilization and increase in number of mitochondria, however, FO+CO(2.5:1)+DMH group also exhibited mitophagy and crystolysis alongwith altered dynamics in ETC which facilitated apoptosis. It also decreased cholesterol and CL levels to increase apoptosis. Fish oil targets mitochondria in a dose dependent manner that augments apoptosis and hence attenuates carcinogenesis.


Subject(s)
Colonic Neoplasms/prevention & control , Fish Oils/therapeutic use , Mitochondria/metabolism , Mitochondria/ultrastructure , Animals , Cardiolipins/metabolism , Cell Separation , Cell Survival/drug effects , Cholesterol/metabolism , Corn Oil/pharmacology , Electron Transport/drug effects , Enterocytes/drug effects , Enterocytes/pathology , Fish Oils/pharmacology , Male , Mitochondria/drug effects , Rats, Wistar
15.
Biomed Pharmacother ; 83: 733-739, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27470575

ABSTRACT

BACKGROUND: There is increased risk of colon cancer in both men and women having diabetes. The objective of the study was to evaluate the role of Secoisolariciresinol diglucoside rich extract(SRE) of L.usissatisimum(flaxseed) in colon cancer associated with type 2 diabetes mellitus. MATERIAL AND METHODS: Diabetes was induced by administering high fat diet with low dose streptozotocin model. After 6 weeks, diabetes was confirmed and 1,2 dimethylhydrazine(25mg/kg, sc) weekly administration was from 6th to 18th weeks. Rats were treated with the SRE(500mg/kg) orally from 6th to 24th week. After 24 weeks, various biochemical and enzymatic parameters were estimated. Animals were sacrificed and colon tissue was separated and subjected to analysis of histopathological, PCNA studies and mRNA expression of CDK4. RESULTS: Disease control rats depicted hyperglycaemia, hyperinsulinaemia, elevated pro-inflammatory cytokines and cancer biomarker levels, and marked presence of proliferating cells. Treatment with SRE controlled hyperglycaemia, hyperinsulinaemia, reduced pro-inflammatory cytokines and cancer biomarker levels, and decreased no. of proliferating cells. We found that disease control rats depicted over expression of CDK4 mRNA levels which were reduced by SRE treatment. CONCLUSIONS: SRE of L. usitatissimum exhibited chemopreventive effect in colon cancer associated with type 2 diabetes mellitus which might be mediated through inhibition of CDK4.


Subject(s)
Butylene Glycols/therapeutic use , Colonic Neoplasms/drug therapy , Colonic Neoplasms/prevention & control , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Diabetes Mellitus, Type 2/drug therapy , Flax/chemistry , Glucosides/therapeutic use , Plant Extracts/therapeutic use , Animals , Biomarkers, Tumor/metabolism , Butylene Glycols/pharmacology , Cell Proliferation/drug effects , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cytokines/metabolism , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Glucose Tolerance Test , Glucosides/pharmacology , Hyperglycemia/complications , Hyperglycemia/drug therapy , Hyperglycemia/pathology , Inflammation Mediators/metabolism , Male , Phytochemicals/analysis , Plant Extracts/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley
16.
Biomol Ther (Seoul) ; 23(5): 471-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26336588

ABSTRACT

Colon cancer is considered as the precarious forms of cancer in many developed countries, with few to no symptoms; the tumor is often diagnosed in the later stages of cancer. Monoterpenes are a major part of plant essential oils found largely in fruits, vegetables and herbs. The cellular and molecular activities show therapeutic progression that may reduce the risk of developing cancer by modulating the factors responsible for colon carcinogenesis. Colon cancer was induced with DMH with a dose of (20 mg/Kg/body weight) for 15 weeks by subcutaneous injection once in a week. Myrtenal treatment was started with (230 mg/Kg/body weight) by intragastric administration, one week prior to DMH induction and continued till the experimental period of 30 weeks. The Invivo results exhibit the elevated antioxidant and lipid peroxidation levels in DMH treated animals. The Histopathological analysis of colon tissues well supported the biochemical alterations and inevitably proves the protective role of Myrtenal. Treatment with myrtenal to cancer bearing animals resulted in a remarkable increase in the inherent antioxidants and excellent modulation in the morphological and physiological nature of the colon tissue. It is thus concluded that myrtenal exhibits excellent free radical scavenging activity and anticancer activity through the suppression of colon carcinoma in Wistar albino rats.

17.
Aging Cell ; 14(2): 209-18, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25546159

ABSTRACT

The dorsomedial hypothalamus (DMH) controls a number of essential physiological responses. We have demonstrated that the DMH plays an important role in the regulation of mammalian aging and longevity. To further dissect the molecular basis of the DMH function, we conducted microarray-based gene expression profiling with total RNA from laser-microdissected hypothalamic nuclei and tried to find the genes highly and selectively expressed in the DMH. We found neuropeptide VF precursor (Npvf), PR domain containing 13 (Prdm13), and SK1 family transcriptional corepressor (Skor1) as DMH-enriched genes. Particularly, Prdm13, a member of the Prdm family of transcription regulators, was specifically expressed in the compact region of the DMH (DMC), where Nk2 homeobox 1 (Nkx2-1) is predominantly expressed. The expression of Prdm13 in the hypothalamus increased under diet restriction, whereas it decreased during aging. Prdm13 expression also showed diurnal oscillation and was significantly upregulated in the DMH of long-lived BRASTO mice. The transcriptional activity of the Prdm13 promoter was upregulated by Nkx2-1, and knockdown of Nkx2-1 suppressed Prdm13 expression in primary hypothalamic neurons. Interestingly, DMH-specific Prdm13-knockdown mice showed significantly reduced wake time during the dark period and decreased sleep quality, which was defined by the quantity of electroencephalogram delta activity during NREM sleep. DMH-specific Prdm13-knockdown mice also exhibited progressive increases in body weight and adiposity. Our findings indicate that Prdm13/Nkx2-1-mediated signaling in the DMC declines with advanced age, leading to decreased sleep quality and increased adiposity, which mimic age-associated pathophysiology, and provides a potential link to DMH-mediated aging and longevity control in mammals.


Subject(s)
Adiposity/physiology , Histone-Lysine N-Methyltransferase/deficiency , Hypothalamus/metabolism , Sleep/physiology , Transcription Factors/deficiency , Adiposity/genetics , Age Factors , Amino Acid Sequence , Animals , Energy Metabolism , Female , Gene Knockdown Techniques , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Promoter Regions, Genetic , Sleep/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Article in English | WPRIM | ID: wpr-86470

ABSTRACT

Colon cancer is considered as the precarious forms of cancer in many developed countries, with few to no symptoms; the tumor is often diagnosed in the later stages of cancer. Monoterpenes are a major part of plant essential oils found largely in fruits, vegetables and herbs. The cellular and molecular activities show therapeutic progression that may reduce the risk of developing cancer by modulating the factors responsible for colon carcinogenesis. Colon cancer was induced with DMH with a dose of (20 mg/Kg/body weight) for 15 weeks by subcutaneous injection once in a week. Myrtenal treatment was started with (230 mg/Kg/body weight) by intragastric administration, one week prior to DMH induction and continued till the experimental period of 30 weeks. The Invivo results exhibit the elevated antioxidant and lipid peroxidation levels in DMH treated animals. The Histopathological analysis of colon tissues well supported the biochemical alterations and inevitably proves the protective role of Myrtenal. Treatment with myrtenal to cancer bearing animals resulted in a remarkable increase in the inherent antioxidants and excellent modulation in the morphological and physiological nature of the colon tissue. It is thus concluded that myrtenal exhibits excellent free radical scavenging activity and anticancer activity through the suppression of colon carcinoma in Wistar albino rats.


Subject(s)
Animals , Rats , Antioxidants , Carcinogenesis , Colon , Colonic Neoplasms , Developed Countries , Dimenhydrinate , Fruit , Injections, Subcutaneous , Lipid Peroxidation , Monoterpenes , Oils, Volatile , Plants , Vegetables
19.
Neuroscience ; 258: 355-63, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24286756

ABSTRACT

The rat retrotrapezoid nucleus (RTN) contains neurons that have a well-defined phenotype characterized by the presence of vesicular glutamate transporter 2 (VGLUT2) mRNA and a paired-like homeobox 2b (Phox2b)-immunoreactive (ir) nucleus and the absence of tyrosine hydroxylase (TH). These neurons are important to chemoreception. In the present study, we tested the hypothesis that the chemically-coded RTN neurons (ccRTN) (Phox2b(+)/TH(-)) are activated during an acute episode of running exercise. Since most RTN neurons are excited by the activation of perifornical and lateral hypothalamus (PeF/LH), a region that regulates breathing during exercise, we also tested the hypothesis that PeF/LH projections to RTN neurons contribute to their activation during acute exercise. In adult male Wistar rats that underwent an acute episode of treadmill exercise, there was a significant increase in c-Fos immunoreactive (c-Fos-ir) in PeF/LH neurons and RTN neurons that were Phox2b(+)TH(-) (p<0.05) compared to rats that did not exercise. Also the retrograde tracer Fluoro-Gold that was injected into RTN was detected in c-Fos-ir PeF/LH (p<0.05). In summary, the ccRTN neurons (Phox2b(+)TH(-)) are excited by running exercise. Thus, ccRTN neurons may contribute to both the chemical drive to breath and the feed-forward control of breathing associated with exercise.


Subject(s)
Homeodomain Proteins/metabolism , Hypothalamus/physiology , Locomotion/physiology , Medulla Oblongata/physiology , Neurons/physiology , Physical Exertion/physiology , Transcription Factors/metabolism , Animals , Blood Gas Analysis , Lactic Acid/blood , Male , Neural Pathways/physiology , Neuronal Tract-Tracers , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Stilbamidines
20.
Acta Pharm Sin B ; 4(3): 173-81, 2014 Jun.
Article in English | MEDLINE | ID: mdl-26579381

ABSTRACT

Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL