Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Int J Biol Macromol ; 258(Pt 2): 128869, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114013

ABSTRACT

In this work, a simple, efficient and eco-friendly green synthesis of manganese dioxide nanoparticles (MnO2NPs) by Psidium guajava leaf extract was described. Fourier-Transform infrared spectra results revealed that involvement of the plant extract functional groups in the formation of MnO2NPs. The UV-vis absorption spectra of the synthesized MnO2NPs exhibited absorption peaks at 374 nm, which were attributed to the band gap of the MnO2NPs. Crystal phase identification of the MnO2NPs were characterized by X-ray diffraction analysis and the formation of crystalline MnO2NPs have been confirmed. Furthermore, scanning electron microscopy analysis showed that the synthesized MnO2NPs have a spherical in shape. Interestingly, the prepared green synthesized MnO2NPs showed catalytic degradation activity for malachite green dye. Malachite green's photocatalytic degradation was detected spectrophotometrically in the wavelength range of 250-900 nm, and it was discovered to have a photodegradation efficiency of 75.5 % within 90 min when exposed to solar radiation. Green synthesized MnO2NPs are responsible for this higher activity. An interaction between synthesized NPs and biomolecules, including CT-DNA and BSA was also evaluated. The spectrophotometric and Fluoro spectroscopic analyses indicate a gradual reduction in peak intensities and shifts in wavelengths, indicating binding and affinity between the NPs and the biomolecules.


Subject(s)
Metal Nanoparticles , Psidium , Rosaniline Dyes , Metal Nanoparticles/chemistry , Manganese Compounds , Oxides , X-Ray Diffraction , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Curr Res Neurobiol ; 5: 100114, 2023.
Article in English | MEDLINE | ID: mdl-38020809

ABSTRACT

The chromodomain helicase DNA-binding protein 8 (CHD8) is a chromatin remodeler whose mutation is associated, with high penetrance, with autism. Individuals with CHD8 mutations share common symptoms such as autistic behaviour, cognitive impairment, schizophrenia comorbidity, and phenotypic features such as macrocephaly and facial defects. Chd8-deficient mouse models recapitulate most of the phenotypes seen in the brain and other organs of humans. It is known that CHD8 regulates - directly and indirectly - neuronal, autism spectrum disorder (ASDs)-associated genes and long non-coding RNAs (lncRNAs) genes, which, in turn, regulate fundamental aspects of neuronal differentiation and brain development and function. A major characteristic of CHD8 regulation of gene expression is its non-linear and dosage-sensitive nature. CHD8 mutations appear to affect males predominantly, although the reasons for this observed sex bias remain- unknown. We have recently reported that CHD8 directly regulates X chromosome inactivation (XCI) through the transcriptional control of the Xist long non-coding RNA (lncRNA), the master regulator of mammalian XCI. We identified a role for CHD8 in regulating accessibility at the Xist promoter through competitive binding with transcription factors (TFs) at Xist regulatory regions. We speculate here that CHD8 might also regulate accessibility at neuronal/ASD targets through a similar competitive binding mechanism during neurogenesis and brain development. However, whilst such a model can reconcile the phenotypic differences observed in Chd8 knock-down (KD) vs knock-out (KO) mouse models, explaining the observed CHD8 non-linear dosage-dependent activity, it cannot on its own explain the observed disease sex bias.

3.
Biosci Rep ; 43(10)2023 10 31.
Article in English | MEDLINE | ID: mdl-37815922

ABSTRACT

YY1 is a ubiquitously expressed, intrinsically disordered transcription factor involved in neural development. The oligomeric state of YY1 varies depending on the environment. These structural changes may alter its DNA binding ability and hence its transcriptional activity. Just as YY1's oligomeric state can impact its role in transcription, so does its interaction with other proteins such as FOXP2. The aim of this work is to study the structure and dynamics of YY1 so as to determine the influence of oligomerisation and associations with FOXP2 on its DNA binding mechanism. The results confirm that YY1 is primarily a disordered protein, but it does consist of certain specific structured regions. We observed that YY1 quaternary structure is a heterogenous mixture of oligomers, the overall size of which is dependent on ionic strength. Both YY1 oligomerisation and its dynamic behaviour are further subject to changes upon DNA binding, whereby increases in DNA concentration result in a decrease in the size of YY1 oligomers. YY1 and the FOXP2 forkhead domain were found to interact with each other both in isolation and in the presence of YY1-specific DNA. The heterogeneous, dynamic multimerisation of YY1 identified in this work is, therefore likely to be important for its ability to make heterologous associations with other proteins such as FOXP2. The interactions that YY1 makes with itself, FOXP2 and DNA form part of an intricate mechanism of transcriptional regulation by YY1, which is vital for appropriate neural development.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , DNA/metabolism , Gene Expression Regulation
4.
Chin J Integr Med ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695446

ABSTRACT

OBJECTIVE: To examine the effect of combined treatment with Bojungikgi-tang (BJIGT, Buzhong Yiqi Decoction) and riluzole (RZ) in transactive response DNA-binding protein 43 (TDP-43) stress granule (SG) cells, a amyotrophic lateral sclerosis (ALS) cell line using transcriptomic and molecular techniques. METHODS: TDP-43 SG cells were pretreated with BJIGT (100 µg/mL), RZ (50 µmol/L), and combined BJIGT (100 µg/mL)/RZ (50 µmol/L) for 6 h before treatment with lipopolysaccharide (LPS, 200 µmol/L). Cell viability assay was performed to elucidate cell toxicity in TDP-43 SC cells using a cell-counting kit-8 (CCK8) assay kit. The expression levels of cell death-related proteins, including Bax, caspase 1, cleaved caspase 3 and DJ1 in TDP-43 SG cells were examined by Western blot analysis. The autophagy-related proteins, including pmTOR/mTOR, LC3b, P62, ATG7 and Bcl-2-associated athanogene 3 (Bag3) were investigated using immunofluorescence and immunoblotting assays. RESULTS: Cell viability assay and Western blot analysis showed that combined treatment with BJIGT and RZ suppressed LPS-induced cell death and expression of cell death-related proteins, including Bax, caspase 1, and DJ1 (P<0.05 or P<0.01). Immunofluorescence and immunoblotting assays showed that combined treatment with BJIGT and RZ reduced LPS-induced formation of TDP-43 aggregates and regulated autophagy-related protein levels, including p62, light chain 3b, Bag3, and ATG7, in TDP-43-expressing cells (P<0.05 or P<0.01). CONCLUSION: The combined treatment of BJIGT and RZ might reduce inflammation and regulate autophagy dysfunction in TDP-43-induced ALS.

5.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194905, 2023 03.
Article in English | MEDLINE | ID: mdl-36581245

ABSTRACT

Human protein Yin Yang 1 (YY1) controls the transcription of hundreds of genes both positively and negatively through interactions with a wide range of partner proteins. Results presented here from proteolytic sensitivity, calorimetry, circular dichroism, fluorescence, NMR, size-exclusion chromatography, SELEX, and EMSA show that purified YY1 forms dimers via its disordered N-terminal region with strong zinc-ion concentration dependence. The YY1 dimer is shown to bind tandem repeats of a canonical recognition DNA sequence with high affinity, and analysis of human YY1 regulatory sites shows that many contain repeats of its recognition elements. YY1 dimerization may compete with partner protein interactions, making control by zinc ion concentration a previously unrecognized factor affecting YY1 gene regulation. Indeed, YY1 is known to be important in many pathogenic processes, including neoplasia, in which zinc ion concentrations are altered. The present results incentivize studies in vivo or in vitro that explore the role of zinc ion concentration in YY1-mediated gene expression.


Subject(s)
YY1 Transcription Factor , Zinc , Humans , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , Zinc/metabolism , Dimerization , Gene Expression Regulation , Base Sequence
6.
Cell Chem Biol ; 29(11): 1639-1648.e4, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36356585

ABSTRACT

DNA-binding proteins are promising therapeutic targets but are notoriously difficult to drug. Here, we evaluate a chemoproteomic DNA interaction platform as a complementary strategy for parallelized compound profiling. To enable this approach, we determined the proteomic binding landscape of 92 immobilized DNA sequences. Perturbation-induced activity changes of captured transcription factors in disease-relevant settings demonstrated functional relevance of the enriched subproteome. Chemoproteomic profiling of >300 cysteine-directed compounds against a coverage optimized bead mixture, which specifically captures >150 DNA binders, revealed competition of several DNA-binding proteins, including the transcription factors ELF1 and ELF2. We also discovered the first compound that displaces the DNA-repair complex MSH2-MSH3 from DNA. Compound binding to cysteine 252 on MSH3 was confirmed using chemoproteomic reactive cysteine profiling. Overall, these results suggested that chemoproteomic DNA bead pull-downs enable the specific readout of transcription factor activity and can identify functional "hotspots" on DNA binders toward expanding the druggable proteome.


Subject(s)
Cysteine , DNA-Binding Proteins , Proteomics , Transcription Factors , Proteome
7.
Bull Cancer ; 109(9): 886-894, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35788271

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a key initial step in the recurrence and metastasis of tongue squamous cell carcinoma (TSCC). Hyperthermia (HT) may reduce the rate of postoperative recurrence and distant metastasis by reversing the process of EMT of tumor cells, but the molecular mechanism is unclear. This study aims to investigate the role of inhibitor of differentiation/DNA binding-1 (Id-1) in HT mediated reversal of EMT of TSCC cells, and to provide a new approach for the treatment of TSCC using therapeutic gene targeting. After the combination of RNA interference with Id-1 and HT, the morphology of TSCC cells changed from spindle-like to pebble-like, and the arrangement of cells changed from loose and disorderly to compact and orderly. The silencing of Id-1 gene enhances the efficacy of HT by affecting the expression of EMT markers in TSCC cells. This study suggests that the Id-1 gene in TSCC cells can regulate transforming growth factor-beta 1, thereby affecting the expression of EMT markers, to achieve the effect of reducing HT.


Subject(s)
Carcinoma, Squamous Cell , Hyperthermia, Induced , Tongue Neoplasms , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Tongue/metabolism , Tongue/pathology , Tongue Neoplasms/genetics , Tongue Neoplasms/metabolism , Tongue Neoplasms/therapy
8.
Molecules ; 27(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35335262

ABSTRACT

The aim of this study was to obtain essential oil (LNEO) from the Laurus nobilis L. plant, and to prepare LNEO-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) as an approach in cancer treatment. The components of the obtained LNEO were analyzed using GC-MS. The LNEO-NPs were synthesized by the single-emulsion method. The LNEO-NPs were characterized using UV-Vis spectrometry, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and a DNA binding assay, which was performed via the UV-Vis titration method. According to the results, the LNEO-NPs had a 211.4 ± 4.031 nm average particle size, 0.068 ± 0.016 PdI, and -7.87 ± 1.15 mV zeta potential. The encapsulation efficiency and loading capacity were calculated as 59.25% and 25.65%, respectively, and the in vitro drug release study showed an LNEO release of 93.97 ± 3.78% over the 72 h period. Moreover, the LNEO was intercalatively bound to CT-DNA. In addition, the mechanism of action of LNEO on a dual PI3K/mTOR inhibitor was predicted, and its antiproliferative activity and mechanism were determined using molecular docking analysis. It was concluded that LNEO-loaded PLGA NPs may be used for cancer treatment as a novel phytotherapeutic agent-based controlled-release system.


Subject(s)
Laurus , Neoplasms , Oils, Volatile , Glycols , Lactic Acid/chemistry , Molecular Docking Simulation , Neoplasms/drug therapy , Oils, Volatile/pharmacology , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
9.
Med Chem ; 18(7): 784-790, 2022.
Article in English | MEDLINE | ID: mdl-35249503

ABSTRACT

BACKGROUND: It is known that pyrrolidinone derivates belong to a class of biologically active compounds with a broad spectrum of biological actions. Nowadays, many scientists are making an effort in the discovery of more effective ways to eliminate reactive oxygen species (ROS) that cause oxidative stress or to eliminate the harmful microorganisms from the organism in humans. Therefore, pyrrolidinones seem to be great candidates for the research of this field. METHODS: The antimicrobial activity of tested compounds was estimated by the determination of the minimal inhibitory concentration by the broth micro-dilution method against four species of bacteria and five species of fungi. The antioxidant activity was evaluated by free radical scavenging and reducing power. RESULTS: Among the tested compounds, P22 showed marked antibacterial activity on Staphylococcus aureus with a MIC value of 0.312 mg/mL. Maximum antifungal activity with MIC value 0.625 mg/mL was shown by P23 and P25 compounds against Trichophyton mentagrophytes. Tested samples showed a relatively strong scavenging activity on DPPH radical (IC50 ranged from 166.75- 727.17 µg/mL). The strongest DPPH radical scavenging activity was shown by P3 compound with an IC50 value of 166.75 µg/mL. Moreover, the tested compounds had effective reducing power. Compounds P3, P10, and P13 showed the highest reducing power than those from the other samples. Results of the interactions between DNA and P3 indicated that P3 had the affinity to displace EB from the EB-DNA complex through intercalation [Ksv = (1.4 ± 0.1) × 105 M-1], while Ka values obtained via titration of BSA with P23 or P25 [Ka = (6.2 ± 0.2) and (5.0 ± 0.2) × 105 M-1] indicate that the notable quantity of the drug can be transmitted to the cells. CONCLUSION: Achieved results indicate that our compounds are potential candidates for use as medicaments.


Subject(s)
Anti-Infective Agents , Antioxidants , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , DNA , Humans , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Pyridinolcarbamate
10.
Zhongguo Zhong Yao Za Zhi ; 47(1): 62-71, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178912

ABSTRACT

Dof(DNA binding with one finger), a unique class of transcription factors in plants, play an important role in seed development, tissue differentiation, and metabolic regulation. To identify the number and function of Dof gene family members in Panax ginseng, this study identified the members of Dof gene family in P. ginseng and systematically analyzed their structures, evolution, functional differentiation, expression patterns, and interactions using bioinformatics methods at the transcriptome level. At the same time, the association analysis of Dof genes from P. ginseng with key enzyme genes for ginsenoside synthesis was carried out to screen the candidate PgDof genes involved in the regulation of ginsenoside biosynthesis. The results showed that there were 54 genes belonging to the Dof gene family in P. ginseng from Jilin. All PgDof genes had Zf-Dof conserved motifs, implying that they were evolutionarily conserved and could be divided into five groups. Expression pattern analysis confirmed that the expression of PgDof gene family members in different tissues, different year-old P. ginseng, and different farm varieties varied significantly. Simultaneously, as revealed by "gene-saponin content" and "gene-gene" linkage analysis, an important candidate PgDof14-1 gene involved in the regulation of ginsenoside biosynthesis was obtained. From the established genetic transformation system of this gene in the hairy roots of P. ginseng, a positive hairy root clone was determined. This study has laid a theoretical foundation for the study of Dof gene family in P. ginseng.


Subject(s)
Ginsenosides , Panax , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Transcriptome
11.
Article in Chinese | WPRIM | ID: wpr-927912

ABSTRACT

Dof(DNA binding with one finger), a unique class of transcription factors in plants, play an important role in seed development, tissue differentiation, and metabolic regulation. To identify the number and function of Dof gene family members in Panax ginseng, this study identified the members of Dof gene family in P. ginseng and systematically analyzed their structures, evolution, functional differentiation, expression patterns, and interactions using bioinformatics methods at the transcriptome level. At the same time, the association analysis of Dof genes from P. ginseng with key enzyme genes for ginsenoside synthesis was carried out to screen the candidate PgDof genes involved in the regulation of ginsenoside biosynthesis. The results showed that there were 54 genes belonging to the Dof gene family in P. ginseng from Jilin. All PgDof genes had Zf-Dof conserved motifs, implying that they were evolutionarily conserved and could be divided into five groups. Expression pattern analysis confirmed that the expression of PgDof gene family members in different tissues, different year-old P. ginseng, and different farm varieties varied significantly. Simultaneously, as revealed by "gene-saponin content" and "gene-gene" linkage analysis, an important candidate PgDof14-1 gene involved in the regulation of ginsenoside biosynthesis was obtained. From the established genetic transformation system of this gene in the hairy roots of P. ginseng, a positive hairy root clone was determined. This study has laid a theoretical foundation for the study of Dof gene family in P. ginseng.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Ginsenosides , Panax , Plant Proteins/metabolism , Plant Roots/metabolism , Transcriptome
12.
Acta Pharmacol Sin ; 43(1): 229-239, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33767381

ABSTRACT

Androgen receptor (AR), a ligand-activated transcription factor, is a master regulator in the development and progress of prostate cancer (PCa). A major challenge for the clinically used AR antagonists is the rapid emergence of resistance induced by the mutations at AR ligand binding domain (LBD), and therefore the discovery of novel anti-AR therapeutics that can combat mutation-induced resistance is quite demanding. Therein, blocking the interaction between AR and DNA represents an innovative strategy. However, the hits confirmed targeting on it so far are all structurally based on a sole chemical scaffold. In this study, an integrated docking-based virtual screening (VS) strategy based on the crystal structure of the DNA binding domain (DBD) of AR was conducted to search for novel AR antagonists with new scaffolds and 2-(2-butyl-1,3-dioxoisoindoline-5-carboxamido)-4,5-dimethoxybenzoicacid (Cpd39) was identified as a potential hit, which was competent to block the binding of AR DBD to DNA and showed decent potency against AR transcriptional activity. Furthermore, Cpd39 was safe and capable of effectively inhibiting the proliferation of PCa cell lines (i.e., LNCaP, PC3, DU145, and 22RV1) and reducing the expression of the genes regulated by not only the full-length AR but also the splice variant AR-V7. The novel AR DBD-ARE blocker Cpd39 could serve as a starting point for the development of new therapeutics for castration-resistant PCa.


Subject(s)
Androgen Receptor Antagonists/pharmacology , DNA/antagonists & inhibitors , Drug Discovery , Molecular Docking Simulation , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/chemistry , Binding Sites/drug effects , DNA/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Structure , Receptors, Androgen/chemistry , Structure-Activity Relationship
13.
Methods Mol Biol ; 2354: 123-142, 2021.
Article in English | MEDLINE | ID: mdl-34448158

ABSTRACT

Plant growth and adaptation to environmental fluctuations involve a tight control of cellular processes which, to a great extent, are mediated by changes at the transcriptional level. This regulation is exerted by transcription factors (TFs), a group of regulatory proteins that control gene expression by directly binding to the gene promoter regions via their cognate TF-binding sites (TFBS). The nature of TFBS defines the pattern of expression of the various plant loci, the precise combinatorial assembly of these elements being key in conferring plant's adaptation ability and in domestication. As such, TFs are main potential targets for biotechnological interventions, prompting in the last decade notable protein-DNA interaction efforts toward definition of their TFBS. Distinct methods based on in vivo or in vitro approaches defined the TFBS for many TFs, mainly in Arabidopsis, but comprehensive information on the transcriptional networks for many regulators is still lacking, especially in crops. In this chapter, detailed protocols for DAP-seq studies to unbiased identification of TFBS in potato are provided. This methodology relies on the affinity purification of genomic DNA-protein complexes in vitro, and high-throughput sequencing of the eluted DNA fragments. DAP-seq outperforms other in vitro DNA-motif definition strategies, such as protein-binding microarrays and SELEX-seq, since the protein of interest is directly bound to the genomic DNA extracted from plants yielding all the potential sites bound by the TF in the genome. Actually, data generated from DAP-seq experiments are highly similar to those out of ChIP-seq methods, but are generated much faster. We also provide a standard procedure to the analysis of the DAP-seq data, addressed to non-experienced users, that involves two consecutive steps: (1) processing of raw data (trimming, filtering, and read alignment) and (2) peak calling and identification of enriched motifs. This method allows identification of the binding profiles of dozens of TFs in crops, in a timely manner.


Subject(s)
Solanum tuberosum , Arabidopsis/genetics , Binding Sites , DNA , Nucleotide Motifs , Solanum tuberosum/genetics , Transcription Factors/genetics
14.
Arch Microbiol ; 203(8): 5215-5224, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34351458

ABSTRACT

Magnolia bark is an edible traditional Chinese medicine that has antibacterial activity against Staphylococcus aureus. In the present study, interactions between S. aureus DNA and raw magnolia bark (RMB) and ginger mix-fried magnolia bark (GMB) aqueous extracts were determined via spectroscopic methods. Fluorescence spectroscopy and Stern-Volmer constants showed that S. aureus DNA quenched the fluorescence of the extracts by static quenching. UV-Vis spectroscopy and iodide quenching experiments indicated that the interactions between S. aureus DNA and the fluorescent substances might involve groove binding or electrostatic interactions. In 4', 6-diamidino-2-phenylindole competitive assays, the fluorescence intensity at decreased as the extract amount was increased. This indicates that groove binding is responsible for the fluorescence quenching. The antibacterial activity of GMB aqueous extract treated under light, cold, heat and cycling hot-cold conditions decreased by 13.99, 9.31, 10.89 and 14.40%, respectively, whereas that of RMB aqueous extract treated under the same conditions decreased by 8.91, 14.99, 14.99 and 13.70%, respectively. The results indicate that S. aureus DNA quenches the fluorescence of GMB and RMB aqueous extracts by grooving interactions. Additionally, the antibacterial activities of GMB and RMB extracts are sensitive to light and temperature, respectively.


Subject(s)
Magnolia , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , DNA , Plant Bark , Plant Extracts/pharmacology
15.
Methods Mol Biol ; 2366: 43-66, 2021.
Article in English | MEDLINE | ID: mdl-34236632

ABSTRACT

Nuclear factor-kappa B (NF-κB) transcription factors coordinate gene expression in response to a broad array of cellular signals. In vertebrates, there are five NF-κB proteins (c-Rel, RelA/p65, RelB, p50, and p52) that can form various dimeric combinations exhibiting both common and dimer-specific DNA-binding specificity. In this chapter, we describe the use of the nuclear extract protein-binding microarray (nextPBM), a high-throughput method to characterize the DNA binding of transcription factors present in cell nuclear extracts. NextPBMs allow for sensitive analysis of the DNA binding of NF-κB dimers and their interactions with cell-specific cofactors.


Subject(s)
Protein Array Analysis , Animals , DNA/genetics , DNA/metabolism , NF-kappa B/metabolism , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Plant Extracts , Protein Binding , Signal Transduction , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
16.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 7): 202-207, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34196610

ABSTRACT

Pivotal to the regulation of key cellular processes such as the transcription, replication and repair of DNA, DNA-binding proteins play vital roles in all aspects of genetic activity. The determination of high-quality structures of DNA-binding proteins, particularly those in complexes with DNA, provides crucial insights into the understanding of these processes. The presence in such complexes of phosphate-rich oligonucleotides offers the choice of a rapid method for the routine solution of DNA-binding proteins through the use of long-wavelength beamlines such as I23 at Diamond Light Source. This article reports the use of native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods to solve the complex of the DNA-binding domain (DBD) of interferon regulatory factor 4 (IRF4) bound to its interferon-stimulated response element (ISRE). The structure unexpectedly shows three molecules of the IRF4 DBD bound to one ISRE. The sole reliance on native intrinsic anomalous scattering elements that belong to DNA-protein complexes renders the method of general applicability to a large number of such protein complexes that cannot be solved by molecular replacement or by other phasing methods.


Subject(s)
DNA-Binding Proteins/metabolism , Interferon Regulatory Factors/metabolism , Nucleic Acids/metabolism , Phosphorus/metabolism , Sulfur/metabolism , Binding Sites/physiology , Crystallography, X-Ray/methods , DNA-Binding Proteins/chemistry , Humans , Interferon Regulatory Factors/chemistry , Nucleic Acids/chemistry , Phosphorus/chemistry , Protein Domains/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , Sulfur/chemistry
17.
Int J Mol Sci ; 22(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066057

ABSTRACT

Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.


Subject(s)
Cell Cycle Proteins/chemistry , Nucleosomes/metabolism , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly(ADP-ribose) Polymerases/chemistry , Allosteric Regulation/drug effects , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Repair , Humans , Models, Molecular , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Protein Domains/drug effects
18.
Methods Mol Biol ; 2281: 117-133, 2021.
Article in English | MEDLINE | ID: mdl-33847955

ABSTRACT

The bacterial single-stranded DNA-binding protein (SSB) uses an acidic C-terminal tail to interact with over a dozen proteins, acting as a genome maintenance hub. These SSB-protein interactions are essential, as mutations to the C-terminal tail that disrupt these interactions are lethal in Escherichia coli. While the roles of individual SSB-protein interactions have been dissected with mutational studies, small-molecule inhibitors of these interactions could serve as valuable research tools and have potential as novel antimicrobial agents. This chapter describes a high-throughput screening campaign used to identify inhibitors of SSB-protein interactions. A screen targeting the PriA-SSB interface from Klebsiella pneumoniae is presented as an example, but the methods may be adapted to target nearly any SSB interaction.


Subject(s)
DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Klebsiella pneumoniae/metabolism , Small Molecule Libraries/pharmacology , Binding Sites , DNA Helicases/chemistry , DNA-Binding Proteins/chemistry , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Models, Molecular , Protein Binding/drug effects , Protein Conformation
19.
Front Microbiol ; 12: 809030, 2021.
Article in English | MEDLINE | ID: mdl-35185833

ABSTRACT

DNA-binding protein HU is highly conserved in bacteria and has been implicated in a range of cellular processes and phenotypes. Like eukaryotic histones, HU is subjected to post-translational modifications. Specifically, acetylation of several lysine residues have been reported in both homologs of Escherichia coli HU. Here, we investigated the effect of acetylation at Lys67 and Lys86, located in the DNA binding-loop and interface of E. coli HUß, respectively. Using the technique of genetic code expansion, homogeneous HUß(K67ac) and HUß(K86ac) protein units were obtained. Acetylation at Lys86 seemed to have negligible effects on protein secondary structure and thermal stability. Nevertheless, we found that this site-specific acetylation can regulate DNA binding by the HU homodimer but not the heterodimer. Intriguingly, while Lys86 acetylation reduced the interaction of the HU homodimer with short double-stranded DNA containing a 2-nucleotide gap or nick, it enhanced the interaction with longer DNA fragments and had minimal effect on a short, fully complementary DNA fragment. These results demonstrate the complexity of post-translational modifications in functional regulation, as well as indicating the role of lysine acetylation in tuning bacterial gene transcription and epigenetic regulation.

20.
Int J Mol Sci ; 21(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266352

ABSTRACT

Nuclear factor-κB (NF-κB) is an important transcription factor involved in various biological functions, including tumorigenesis. Hence, NF-κB has attracted attention as a target factor for cancer treatment, leading to the development of several inhibitors. However, existing NF-κB inhibitors do not discriminate between its subunits, namely, RelA, RelB, cRel, p50, and p52. Conventional methods used to evaluate interactions between transcription factors and DNA, such as electrophoretic mobility shift assay and luciferase assays, are unsuitable for high-throughput screening (HTS) and cannot distinguish NF-κB subunits. We developed a HTS method named DNA strand exchange fluorescence resonance energy transfer (DSE-FRET). This assay is suitable for HTS and can discriminate a NF-κB subunit. Using DSE-FRET, we searched for RelA-specific inhibitors and verified RelA inhibition for 32,955 compounds. The compound A55 (2-(3-carbamoyl-6-hydroxy-4-methyl-2-oxopyridin-1(2H)-yl) acetic acid) selectively inhibited RelA-DNA binding. We propose that A55 is a seed compound for RelA-specific inhibition and could be used in clinical applications.


Subject(s)
Drug Evaluation, Preclinical/methods , Fluorescence Resonance Energy Transfer/methods , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/chemistry , Binding Sites , Cell Line, Tumor , DNA/chemistry , DNA/metabolism , High-Throughput Screening Assays , Humans , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL