Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Mol Biol Rep ; 51(1): 489, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578370

ABSTRACT

BACKGROUND: The determination of genome size is a fundamental step which provides a basis to initiate studies aimed at deciphering the genetic similarity of a species and to carry out other genomics based investigations. Fenugreek (Trigonella spp.) is an important spice crop which has numerous health promoting phytochemicals. Many species within this genus are known for their various health benefits owing to the presence of a wide diversity of important phytochemicals like diosgenin, trigonelline, fenugreekine, galactomannan, 4-hydroxy isoleucine, etc. It is a multipurpose crop being cultivated for food, animal feed and industrial purposes. Despite its importance, research on the genomics aspect of fenugreek remains scant. In the absence of sufficient genomic information, crop improvement in fenugreek is severely lagging. METHODS AND RESULTS: Estimation of genome size of a species is the preliminary step for initiation of any genomic studies and therefore in the present study we have estimated the genome size for fenugreek. Here, we have determined the genome sizes of three different Trigonella spp. namely T. foenum-graecum, T. corniculata and T. caerulea through flow cytometry (FC). The 2 C DNA content values were found to be 6.05 pg (T. foenum-graecum), 1.83 pg (T. corniculata) and 1.96 pg (T. caerulea). The genome size of T. foenum-graecum is approximately three times the genome size of T. corniculata and T. caerulea. This variation in genome size of more than three-fold indicates the level of genetic divergence among the three species, though within the same genus. CONCLUSIONS: The differences observed in the genome sizes of the three species provide conclusive evidence of their genetic divergence. Additionally, the information about the genome size would provide an impetus to the structural and functional genomics-based research in this crop.


Subject(s)
Trigonella , Animals , Trigonella/genetics , Trigonella/chemistry , Genome Size , Flow Cytometry , Plant Extracts , Biological Evolution
2.
BMC Plant Biol ; 22(1): 382, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35909100

ABSTRACT

BACKGROUND: The genus Daucus (Apiaceae) comprises about 40 wild species and the cultivated carrot, a crop of great economic and nutritional importance. The rich genetic diversity of wild Daucus species makes them a valuable gene pool for carrot improvement breeding programs. Therefore, it is essential to have good knowledge of the genome structure and relationships among wild Daucus species. To broaden such knowledge, in this research, the nuclear DNA content for 14 Daucus accessions and four closely related species was estimated by flow cytometry and their pollen morphology was analyzed by light and scanning electron microscopy (SEM). RESULTS: The flow cytometric analysis showed a 3.2-fold variation in the mean 2C values among Daucus taxa, ranging from 0.999 (D. carota subsp. sativus) to 3.228 pg (D. littoralis). Among the outgroup species, the mean 2C values were 1.775-2.882 pg. The pollen grains of Daucus were tricolporate, mainly prolate or perprolate (rarely) in shape, and mainly medium or small (rarely) in size (21.19-40.38 µm), whereas the outgroup species had tricolporate, perprolate-shaped, and medium-sized (26.01-49.86 µm) pollen grains. In the studied taxa, SEM analysis revealed that exine ornamentation was striate, rugulate, perforate, or the ornamentation pattern was mixed. At the time of shedding, all pollen grains were three-celled, as evidenced by DAPI staining. We also found high positive correlations between the length of the polar axis (P) and the length of the equatorial diameter (E) of pollen grains, as well as between P and P/E. However, when comparing cytogenetic information with palynological data, no significant correlations were observed. CONCLUSIONS: This study complements the information on the nuclear DNA content in Daucus and provides comprehensive knowledge of the pollen morphology of its taxa. These findings may be important in elucidating the taxonomic relationships among Daucus species and can help in the correct identification of gene bank accessions. In a broader view, they could also be meaningful for the interpretation of evolutionary trends in the genus.


Subject(s)
Apiaceae , Daucus carota , Apiaceae/genetics , Daucus carota/genetics , Genome Size , Microscopy, Electron, Scanning , Plant Breeding , Pollen/anatomy & histology , Pollen/genetics
3.
Cells ; 11(9)2022 04 20.
Article in English | MEDLINE | ID: mdl-35563701

ABSTRACT

The aim of our research was to describe the structure and growth potential of a cell suspension of the tree fern Cyathea smithii. Experiments were performed on an established cell suspension with ½ MS medium supplemented with 9.05 µM 2,4-D + 0.88 µM BAP. In the experiments, attention was paid to the microscopic description of cell suspension, evaluation of cell growth dependent on the initial mass of cells and organic carbon source in the medium, the length of the passage, the content of one selected flavonoid in the post-culture medium, nuclear DNA content, ethylene production, and the antimicrobial value of the extract. For a better understanding of the cell changes that occurred during the culture of the suspension, the following structures of the cell were observed: nucleus, lipid bodies, tannin deposits, starch grains, cell walls, primary lamina, and the filaments of metabolites released into the medium. The nuclear DNA content (acriflavine-Feulgen staining) of cell aggregates distinctly indicated a lack of changes in the sporophytic origin of the cultured cell suspension. The physiological activity of the suspension was found to be high because of kinetics, intensive production of ethylene, and quercetin production. The microbiological studies suggested that the cell suspension possessed a bactericidal character against microaerobic Gram-positive bacteria. A sample of the cell suspension showed bacteriostatic activity against aerobic bacteria.


Subject(s)
Ferns , 2,4-Dichlorophenoxyacetic Acid/metabolism , Anti-Bacterial Agents , Biotechnology , Ethylenes/metabolism , Ferns/metabolism , Suspensions
4.
Planta ; 255(6): 112, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35501619

ABSTRACT

MAIN CONCLUSION: Coffea karyotype organization and evolution has been uncovered by classical cytogenetics and cytogenomics. We revisit these discoveries and present new karyotype data. Coffea possesses ~ 124 species, including C. arabica and C. canephora responsible for commercial coffee production. We reviewed the Coffea cytogenetics, from the first chromosome counting, encompassing the karyotype characterization, chromosome DNA content, and mapping of chromosome portions and DNA sequences, until the integration with genomics. We also showed new data about Coffea karyotype. The 2n chromosome number evidenced the diploidy of almost all Coffea, and the C. arabica tetraploidy, as well as the polyploidy of other hybrids. Since then, other genomic similarities and divergences among the Coffea have been shown by karyotype morphology, nuclear and chromosomal C-value, AT and GC rich chromosome portions, and repetitive sequence and gene mapping. These cytogenomic data allowed us to know and understand the phylogenetic relations in Coffea, as well as their ploidy level and genomic origin, highlighting the relatively recent allopolyploidy. In addition to the euploidy, the role of the mobile elements in Coffea diversification is increasingly more evident, and the comparative analysis of their structure and distribution on the genome of different species is in the spotlight for future research. An integrative look at all these data is fundamental for a deeper understanding of Coffea karyotype evolution, including the key role of polyploidy in C. arabica origin. The 'Híbrido de Timor', a recent natural allotriploid, is also in the spotlight for its potential as a source of resistance genes and model for plant polyploidy research. Considering this, we also present some unprecedented results about the exciting evolutionary history of these polyploid Coffea.


Subject(s)
Coffea , Coffea/genetics , Coffee , Genomics , Karyotype , Phylogeny , Polyploidy
5.
Nutrients ; 13(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072630

ABSTRACT

There is limited evidence regarding the potential risk of untargeted iron supplementation, especially among individuals who are iron-replete or have genetic hemoglobinopathies. Excess iron exposure can increase the production of reactive oxygen species, which can lead to cellular damage. We evaluated the effect of daily oral supplementation on relative leukocyte telomere length (rLTL) and blood mitochondrial DNA (mtDNA) content in non-pregnant Cambodian women (18-45 years) who received 60 mg of elemental iron as ferrous sulfate (n = 190) or a placebo (n = 186) for 12 weeks. Buffy coat rLTL and mtDNA content were quantified by monochrome multiplex quantitative polymerase chain reaction. Generalized linear mixed-effects models were used to predict the absolute and percent change in rLTL and mtDNA content after 12 weeks. Iron supplementation was not associated with an absolute or percent change in rLTL after 12 weeks compared with placebo (ß-coefficient: -0.04 [95% CI: -0.16, 0.08]; p = 0.50 and ß-coefficient: -0.96 [95% CI: -2.69, 0.77]; p = 0.28, respectively). However, iron supplementation was associated with a smaller absolute and percent increase in mtDNA content after 12 weeks compared with placebo (ß-coefficient: -11 [95% CI: -20, -2]; p = 0.02 and ß-coefficient: -11 [95% CI: -20, -1]; p= 0.02, respectively). Thus, daily oral iron supplementation for 12 weeks was associated with altered mitochondrial homeostasis in our study sample. More research is needed to understand the risk of iron exposure and the biological consequences of altered mitochondrial homeostasis in order to inform the safety of the current global supplementation policy.


Subject(s)
DNA, Mitochondrial , Dietary Supplements , Iron , Leukocytes/drug effects , Telomere/drug effects , Adult , Antioxidants/administration & dosage , Antioxidants/pharmacology , Cambodia , DNA, Mitochondrial/blood , DNA, Mitochondrial/drug effects , Female , Humans , Iron/administration & dosage , Iron/pharmacology , Oxidative Stress/drug effects , Young Adult
6.
Cytometry A ; 99(4): 348-358, 2021 04.
Article in English | MEDLINE | ID: mdl-33625767

ABSTRACT

Pollen grains are the male gametophytes in a seed-plant life cycle. Their small, particulate nature and crucial role in plant reproduction have made them an attractive object of study using flow cytometry (FCM), with a wide range of applications existing in the literature. While methodological considerations for many of these overlap with those for other tissue types (e.g., general considerations for the measurement of nuclear DNA content), the relative complexity of pollen compared to single cells presents some unique challenges. We consider these here in the context of both the identification and isolation of pollen and its subunits, and the types of research applications. While the discussion here mostly concerns pollen, the general principles described here can be extended to apply to spores in ferns, lycophytes, and bryophytes. In addition to recommendations provided in more general studies, some recurring and notable issues related specifically to pollen and spores are highlighted.


Subject(s)
Pollen , Spores , Cell Nucleus , Flow Cytometry , Ploidies
7.
BMC Genet ; 21(1): 147, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33287693

ABSTRACT

BACKGROUND: Up to now, diploid and triploid cultivars were reported for the ornamental crop Hydrangea macrophylla. Especially, the origin of triploids and their crossing behaviors are unknown, but the underlying mechanisms are highly relevant for breeding polyploids. RESULTS: By screening a cultivar collection, we identified diploid, triploid, tetraploid and even aneuploid H. macrophylla varieties. The pollen viability of triploids and tetraploids was comparable to that of diploids. Systematic crosses with these cultivars resulted in viable diploid, triploid, tetraploid and aneuploid offspring. Interestingly, crosses between diploids produced diploid and 0 or 1-94% triploid offspring, depending on the cultivars used as pollen parent. This finding suggests that specific diploids form unreduced pollen, either at low or high frequencies. In contrast, crosses of triploids with diploids or tetraploids produced many viable aneuploids, whose 2C DNA contents ranged between the parental 2C values. As expected, crosses between diploid and tetraploid individuals generated triploid offspring. Putative tetraploid plants were obtained at low frequencies in crosses between diploids and in interploid crosses of triploids with either diploid or tetraploid plants. The analysis of offspring populations indicated the production of 1n = 2x gametes for tetraploid plants, whereas triploids produced obviously reduced, aneuploid gametes with chromosome numbers ranging between haploid and diploid level. While euploid offspring grew normally, aneuploid plants showed mostly an abnormal development and a huge phenotypic variation within offspring populations, most likely due to the variation in chromosome numbers. Subsequent crosses with putative diploid, triploid and aneuploid offspring plants from interploid crosses resulted in viable offspring and germination rates ranging from 21 to 100%. CONCLUSIONS: The existence of diploids that form unreduced pollen and of tetraploids allows the targeted breeding of polyploid H. macrophylla. Different ploidy levels can be addressed by combining the appropriate crossing partners. In contrast to artificial polyploidization, cross-based polyploidization is easy, cheap and results in genetically variable offspring that allows the direct selection of more robust and stress tolerant polyploid varieties. Furthermore, the generation of polyploid H. macrophylla plants will favor interspecific breeding programs within the genus Hydrangea.


Subject(s)
Crosses, Genetic , Hydrangea/genetics , Plant Breeding , Polyploidy , Pollen/genetics
8.
Molecules ; 25(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936538

ABSTRACT

Microalgae are freshwater and marine unicellular photosynthetic organisms that utilize sunlight to produce biomass. Due to fast microalgal growth rate and their unique biochemical profiles and potential applications in food and renewable energy industries, the interest in microalgal research is rapidly increasing. Biochemical and genetic engineering have been considered to improve microalgal biomass production but these manipulations also limited microalgal growth. The aim of the study was the biochemical characterization of recently identified microalgal strain Planktochlorella nurekis with elevated cell size and DNA levels compared to wild type strain that was achieved by a safe non-vector approach, namely co-treatment with colchicine and cytochalasin B (CC). A slight increase in growth rate was observed in twelve clones of CC-treated cells. For biochemical profiling, several parameters were considered, namely the content of proteins, amino acids, lipids, fatty acids, ß-glucans, chlorophylls, carotenoids, B vitamins and ash. CC-treated cells were characterized by elevated levels of lipids compared to unmodified cells. Moreover, the ratio of carotenoids to chlorophyll a and total antioxidant capacity were slightly increased in CC-treated cells. We suggest that Planktochlorella nurekis with modified DNA levels and improved lipid content can be considered to be used as a dietary supplement and biofuel feedstock.


Subject(s)
Biomass , DNA/chemistry , Lipids/genetics , Microalgae/genetics , Biofuels , Chlorophyll A/biosynthesis , Chlorophyll A/chemistry , DNA/genetics , Lipids/biosynthesis , Lipids/chemistry , Microalgae/chemistry , Microalgae/metabolism , Photosynthesis/genetics
9.
Toxicol Mech Methods ; 30(2): 153-158, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31532273

ABSTRACT

This current study aimed at detecting the potential protective role of nano-fenugreek seed on acute lung injury (ALI) induced by instillation gastric acid in male Swiss albino mice using histological and histochemical studies. Forty animals were grouped as follows: control group, HCl-treated group, low nano-fenugreek + HCl treated group, and high nano-fenugreek + HCl treated group. Pretreatment with nano-fenugreek in animal model of ALI resulted in marked ameliorations of the lung histological lesions and injury induced by HCL instillation in a dose dependent manner. It also caused inhibition in the increase of the DNA content and prevented proliferation of goblet cells induced by HCl instillation alone. In conclusion, pretreatment with Nano-fenugreek prior induction ALI could be suppress the aggregations of inflammatory cells, enhancing of DNA content, and proliferation of goblet cells induced by gastric acid in a dose dependent manner. We suggest that Nano-fenugreek may be useful in combating lung injury.


Subject(s)
Acute Lung Injury/prevention & control , Cell Proliferation/drug effects , DNA/metabolism , Gastric Acid , Goblet Cells/drug effects , Nanoparticles/chemistry , Plant Extracts/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Administration, Oral , Animals , Disease Models, Animal , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Mice , Plant Extracts/chemistry , Trigonella/chemistry
10.
Molecules ; 24(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987219

ABSTRACT

A protocol for C. japonica micropropagation with a confirmation of genome size stability of the in vitro-propagated plantlets was developed. The highest number of shoots multiplied in vitro was obtained on Murashige & Skoog medium (MS) with 1.0 mg L-1 N6-benzyladenine plus 1.0 mg L-1 indole-3-acetic acid. The highest number of roots was observed for the shoots on MS with 15 g L-1 sucrose plus 1.0 mg L-1 indole-3-acetic acid. The acclimatization rate was significantly high. The qualitative HPLC analyses confirmed the presence of phenolic acids and flavonoids in the extracts. The extracts from both shoot cultures and the leaves from field-grown plants revealed antioxidant activity and they exhibited moderate antimicrobial activity. The conducted research confirmed the regeneration potential of genetically-stable plants of C. japonica under in vitro conditions, the ability of the plantlets to produce polyphenols as those present in field-grown plants, as well as their antioxidant potential.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Rosaceae/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Mass Spectrometry , Microbial Sensitivity Tests , Phenotype , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Shoots/chemistry , Polyphenols/pharmacology , Rosaceae/growth & development
11.
J Genet Eng Biotechnol ; 13(1): 1-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-30647560

ABSTRACT

In vitro induction of polyploids using colchicine causes an increase in DNA content in plants. This is of high importance especially for plants that have medicinal and commercial values. Seeds of two medicinal plants, licorice Glycyrrhiza glabra L. var.glandulifera and safflower Carthamus tinctorius were treated with different concentrations of colchicine, 0%, 0.03%, 0.05%, 0.08%, 0.1% (W/V) in vitro for 24 and 48 h. Treated seeds then were cultured on solid Murashige and Skoog (MS) media under controlled conditions. After a month, the length of the stomata was measured to study the effect of colchicine on stomata size. Cellular DNA content of the regenerated plants was measured by spectrophotometry. Flow cytometry was used for confirming the results obtained from stomata size measurement and spectrophotometry. Results suggested that treated plants have a fair amount of larger stomata, significantly in licorice plantlets that were treated with 0.1% colchicine for 24 h and safflower plantlets that were treated with 0.03%, 0.05% and 0.1% colchicine. Safflower DNA content in all treatments enhanced significantly, but in licorice only DNA content of plantlets that were treated with 0.05% colchicine for 24 h and 0.1%, 0.03% colchicine for 48 h found to be increased significantly. The morphological features of treated plantlets such as shoot and leaf thickness were found to be increased. Flow cytometry confirmed the previously mentioned results and suggested tetraploids in all treated safflower plantlets and licorice plantlets obtained from treatment with 0.08% of colchicine and mixoploids in licorice plantlets obtained from treatment with 0.1% of colchicine.

12.
Toxicol Ind Health ; 31(9): 792-801, 2015 Sep.
Article in English | MEDLINE | ID: mdl-23377115

ABSTRACT

The effects of different treatments with flavour enhancers monosodium glutamate, monopotassium glutamate, calcium diglutamate, monoammonium glutamate, and magnesium diglutamate on the cytology, DNA content, and interphase nuclear volume (INV) of A. cepa were investigated. Three concentrations of these additives - 20, 40, and 60 ppm - were applied for 6, 12, and 24 h. All the concentrations of these chemicals showed an inhibitory effect on cell division in root tips of A. cepa and caused a decrease in mitotic index values. Additionally, all the treatments changed the frequency of mitotic phases when compared with the control groups. These compounds increased chromosome abnormalities, among them are micronuclei, c-mitosis, anaphase bridges, stickiness, binucleus, laggards, and breaks. The nuclear DNA content and INV decreased when compared with control groups.


Subject(s)
DNA Damage/drug effects , Glutamates/adverse effects , Meristem/drug effects , Plant Roots/drug effects , Animal Testing Alternatives , Cell Nucleus/drug effects , Chromosome Aberrations/drug effects , Meristem/cytology , Mitosis , Mitotic Index , Onions/drug effects
13.
Chinese Herbal Medicines ; (4): 152-158, 2015.
Article in Chinese | WPRIM | ID: wpr-842335

ABSTRACT

Objective: The amount of nuclear DNA (C-value) is a key biodiversity character that provides strong unifying elements in revealing the phylogenetic regularity and relationship between genome size and functional traits for plant resource. The estimation of C-values could primarily extend our knowledge on the genetic background and genome diversity for medicinal plants, and thereby the variation of pharmacological constituents and phylogenetic mechanism of medicinal plant taxa will be revealed. However, a large number of medicinal plants (e.g. Cornus officinalis) typically contain a series of secondary metabolites, especially tannic acid, which would significantly affect the estimation of DNA content by flow cytometry (FCM). Methodological discussions and improvement need to be made to solve this problem. Methods: Two isolation buffers LB01 and Otto 1 were selected to prepare nuclear suspension with additional treatments of pre-soaking and centrifugation combination of gradient centrifugal force and duration. The best isolation and estimation methods were determined by FCM measurement in C. officinalis. Results: The dry leaves were pre-soaked in Otto I buffer for 15 min and the Otto I nuclear suspension was centrifugated at 1.0103 g for 2 min. The results showed that debris and nuclei were better separated and the scatterplots of good quality were obtained with low coefficient of variation (CV). Contrarily, the nuclear DNA content of C. officinalis could not be accurately estimated for nuclei extracted by LB01 buffer. Finally, 2C-value and genome size of C. officinalis were first estimated as 5.92 pg and 2893 Mbp, respectively. Conclusion: The new methods proposed here are able to accurately estimate DNA content of C. officinalis, which provides valuable references for the estimation of genome size in other tannin-rich medicinal plants. © 2014 Tianjin Press of Chinese Herbal Medicines.

14.
Ann Bot ; 113(1): 191-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24232381

ABSTRACT

BACKGROUND AND AIMS: Understanding the species composition of pollen on pollinators has applications in agriculture, conservation and evolutionary biology. Current identification methods, including morphological analysis, cannot always discriminate taxa at the species level. Recent advances in flow cytometry techniques for pollen grains allow rapid testing of large numbers of pollen grains for DNA content, potentially providing improved species resolution. METHODS: A test was made as to whether pollen loads from single bees (honey-bees and bumble-bees) could be classified into types based on DNA content, and whether good estimates of proportions of different types could be made. An examination was also made of how readily DNA content can be used to identify specific pollen species. KEY RESULTS: The method allowed DNA contents to be quickly found for between 250 and 9391 pollen grains (750-28 173 nuclei) from individual honey-bees and between 81 and 11 512 pollen grains (243-34 537 nuclei) for bumble-bees. It was possible to identify a minimum number of pollen species on each bee and to assign proportions of each pollen type (based on DNA content) present. CONCLUSIONS: The information provided by this technique is promising but is affected by the complexity of the pollination environment (i.e. number of flowering species present and extent of overlap in DNA content). Nevertheless, it provides a new tool for examining pollinator behaviour and between-species or cytotype pollen transfer, particularly when used in combination with other morphological, chemical or genetic techniques.


Subject(s)
Bees , Flow Cytometry/methods , Pollen , Animals , Pollen/genetics , Pollination
15.
New Phytol ; 200(3): 911-921, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23819630

ABSTRACT

Polyploidy and increased genome size are hypothesized to increase organismal nutrient demands, namely of phosphorus (P), which is an essential and abundant component of nucleic acids. Therefore, polyploids and plants with larger genomes are expected to be selectively disadvantaged in P-limited environments. However, this hypothesis has yet to be experimentally tested. We measured the somatic DNA content and ploidy level in 74 vascular plant species in a long-term fertilization experiment. The differences between the fertilizer treatments regarding the DNA content and ploidy level of the established species were tested using phylogeny-based statistics. The percentage and biomass of polyploid species clearly increased with soil P in particular fertilizer treatments, and a similar but weaker trend was observed for the DNA content. These increases were associated with the dominance of competitive life strategy (particularly advantageous in the P-treated plots) in polyploids and the enhanced competitive ability of dominant polyploid grasses at high soil P concentrations, indicating their increased P limitation. Our results verify the hypothesized effect of P availability on the selection of polyploids and plants with increased genome sizes, although the relative contribution of increased P demands vs increased competitiveness as causes of the observed pattern requires further evaluation.


Subject(s)
Evolution, Molecular , Fertilizers , Genome Size , Genome, Plant , Phosphorus/metabolism , Plants/genetics , Polyploidy , DNA, Plant , Poaceae/genetics , Selection, Genetic , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL