Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.837
Filter
Add more filters

Publication year range
1.
J Toxicol Environ Health A ; 87(11): 457-470, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38576186

ABSTRACT

Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.


Subject(s)
Psidium , Zebrafish , Animals , Glutamates/toxicity , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves
2.
Biochemistry (Mosc) ; 89(Suppl 1): S127-S147, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38621748

ABSTRACT

The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.


Subject(s)
Neoplasms , Precision Medicine , Animals , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Organoids , Drug Evaluation, Preclinical , Tumor Microenvironment
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621984

ABSTRACT

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Reactive Oxygen Species , Rats, Sprague-Dawley , Caspase 3/metabolism , Signal Transduction , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , RNA, Messenger , Apoptosis
4.
Ren Fail ; 46(1): 2336128, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38575340

ABSTRACT

Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Animals , Kidney/pathology , Adenine , Reproducibility of Results , Disease Models, Animal , Renal Insufficiency, Chronic/drug therapy
5.
Cell Biochem Funct ; 42(3): e4007, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593323

ABSTRACT

Cell viability and cytotoxicity assays play a crucial role in drug screening and evaluating the cytotoxic effects of various chemicals. The quantification of cell viability and proliferation serves as the cornerstone for numerous in vitro assays that assess cellular responses to external factors. In the last decade, several studies have developed guidelines for defining and interpreting cell viability and cytotoxicity based on morphological, biochemical, and functional perspectives. As this domain continues to experience ongoing growth, revealing new mechanisms orchestrating diverse cell cytotoxicity pathways, we suggest a revised classification for multiple assays employed in evaluating cell viability and cell death. This classification is rooted in the cellular compartment and/or biochemical element involved, with a specific focus on mechanistic and essential aspects of the process. The assays are founded on diverse cell functions, encompassing metabolic activity, enzyme activity, cell membrane permeability and integrity, adenosine 5'-triphosphate content, cell adherence, reduction equivalents, dye inclusion or exclusion, constitutive protease activity, colony formation, DNA fragmentation and nuclear splitting. These assays present straightforward, reliable, sensitive, reproducible, cost-effective, and high-throughput approaches for appraising the effects of newly formulated chemotherapeutic biomolecules on the cell survival during the drug development process.


Subject(s)
Cell Survival , Cell Death , Drug Evaluation, Preclinical
6.
Int J Pharm ; 656: 124045, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38561134

ABSTRACT

The field of cancer therapy is witnessing the emergence of immunotherapy, an innovative approach that activates the body own immune system to combat cancer. Immunogenic cell death (ICD) has emerged as a prominent research focus in the field of cancer immunotherapy, attracting significant attention in recent years. The activation of ICD can induce the release of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box protein 1 (HMGB1), and heat shock proteins (HSP). Subsequently, this process promotes the maturation of innate immune cells, including dendritic cells (DCs), thereby triggering a T cell-mediated anti-tumor immune response. The activation of the ICD ultimately leads to the development of long-lasting immune responses against tumors. Studies have demonstrated that partial therapeutic approaches, such as chemotherapy with doxorubicin, specific forms of radiotherapy, and phototherapy, can induce the generation of ICD. The main focus of this article is to discuss and review the therapeutic methods triggered by nanoparticles for ICD, while briefly outlining their anti-tumor mechanism. The objective is to provide a comprehensive reference for the widespread application of ICD.


Subject(s)
Immunogenic Cell Death , Immunotherapy , Nanoparticles , Neoplasms , Humans , Immunogenic Cell Death/drug effects , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Immunotherapy/methods , Animals , Nanoparticles/administration & dosage , Dendritic Cells/immunology , Dendritic Cells/drug effects
7.
BMC Palliat Care ; 23(1): 98, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605315

ABSTRACT

BACKGROUND: Research evidence suggests that a lack of engagement with palliative care and advance care planning could be attributed to a lack of knowledge, presence of misconceptions and stigma within the general public. However, the importance of how death, dying and bereavement are viewed and experienced has been highlighted as an important aspect in enabling public health approaches to palliative care. Therefore, research which explores the public views on strategies to facilitate engagement with palliative care and advance care planning is required. METHODS: Exploratory, qualitative design, utilising purposive random sampling from a database of participants involved in a larger mixed methods study. Online semi-structured interviews were conducted (n = 28) and analysed using reflexive thematic analysis. Thematic findings were mapped to the social-ecological model framework to provide a holistic understanding of public behaviours in relation to palliative care and advance care planning engagement. RESULTS: Three themes were generated from the data: "Visibility and relatability"; "Embedding opportunities for engagement into everyday life"; "Societal and cultural barriers to open discussion". Evidence of interaction across all five social ecological model levels was identified across the themes, suggesting a multi-level public health approach incorporating individual, social, structural and cultural aspects is required for effective public engagement. CONCLUSIONS: Public views around potential strategies for effective engagement in palliative care and advance care planning services were found to be multifaceted. Participants suggested an increase in visibility within the public domain to be a significant area of consideration. Additionally, enhancing opportunities for the public to engage in palliative care and advance care planning within everyday life, such as education within schools, is suggested to improve death literacy and reduce stigma. For effective communication, socio-cultural aspects need to be explored when developing strategies for engagement with all members of society.


Subject(s)
Advance Care Planning , Palliative Care , Humans , Palliative Care/methods , Population Groups , Social Stigma , Public Health , Qualitative Research
8.
BMC Pediatr ; 24(1): 260, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641790

ABSTRACT

BACKGROUND: Birth defects (BDs) are the major causes of infant morbidity and mortality in both developed and developing countries. Regardless of their clinical importance, few studies on predisposing factors have been conducted in Ethiopia. However, due to a lack of advanced diagnostic materials, we only considered the externally visible BDs. OBJECTIVE: To assess the determinants of externally visible birth defects among perinatal deaths at Adama Comprehensive Specialized Hospital. METHODS: A retrospective unmatched case-control study design was conducted from November 01 to 30, 2021. The sample size was determined by Epi Info version 7 software considering sample size calculation for an unmatched case-control study. A total of 315 participants (63 cases, and 252 controls) were selected by simple random sampling. Data were collected by an open data kit (ODK) and transported to a statical package for social sciences (SPSS) version 26 software for analysis. The bivariate followed by multivariable logistic regression analyses were done to determine the factors associated with the BD. RESULTS: This study showed that drinking alcohol during pregnancy (AOR = 6.575; 95% CI: 3.102,13.937), lack of antenatal care (ANC) follow-up during pregnancy (AOR = 2.794; 95% CI: 1.333, 5.859), having a history of stillbirth in a previous pregnancy (AOR = 3.967; 95% CI: 1.772, 8.881), exposure to pesticides during pregnancy (AOR = 4.840; 95% CI: 1.375, 17.034), having a history of BDs in a previous pregnancy (AOR = 4.853; 95% CI: 1.492, 15.788), and lack of folic acid supplementation during early pregnancy (AOR = 4.324; 95% CI: 2.062, 9.067) were significant determinants of externally visible BDs among perinatal deaths. CONCLUSION: In this study, alcohol use, exposure to pesticides, and lack of folic acid supplementation during pregnancy were identified as the major determinants of externally visible BDs among perinatal deaths. Thus, health education regarding the associated factors of BDs and their preventive strategies should be given to pregnant mothers.


Subject(s)
Perinatal Death , Pesticides , Infant , Pregnancy , Female , Humans , Case-Control Studies , Retrospective Studies , Prenatal Care , Folic Acid , Hospitals , Ethiopia/epidemiology
9.
Anticancer Agents Med Chem ; 24(10): 789-797, 2024.
Article in English | MEDLINE | ID: mdl-38482619

ABSTRACT

BACKGROUND: Despite remarkable advances, cancer has remained the second cause of death, which shows that more potent novel compounds should be found. Ethnobotanical compounds have a long history of treating diseases, and several approved chemotherapeutic compounds were isolated from plants. OBJECTIVE: The research aimed to evaluate the cytotoxic effects of Dorema hyrcanum root extract on ovarian, breast, and glioblastoma cells while examining its selectivity towards normal cells. Additionally, the study is directed to investigate cell death mechanisms, delineate modes of cell death, and explore intracellular ROS production. METHODS: Cytotoxic effects of alcoholic, dichloromethane, and petroleum ether fractions of Dorema hyrcanum were investigated on cancer and normal cells by using MTT assay, and the concentration around IC50 values was used for flow cytometric assessment of apoptosis, evaluation of the expression of selected genes via RT-qPCR and production of ROS. RESULTS: Methanolic extract exhibited the highest cytotoxicity, impacting A2780CP and MDA-MB-231. All fractions showed comparable effects on U251 cells. Notably, extracts displayed higher IC50 values in normal HDF cells, indicating cancer cell specificity. Flow cytometry revealed induction of apoptosis and non-apoptotic death in all three cancer cell lines. QPCR results showed upregulation of related genes, with RIP3K prominently increased in U251 glioblastoma. The DCFH-DA assay demonstrated ROS induction by the PE fraction exclusively in A2780CP cells after 30 minutes and up to 24 hours. CONCLUSION: Dorema hyrcanum root extracts exhibited potent anti-tumor effects against all studied cell lines. The methanolic extract demonstrated the highest cytotoxicity, particularly against A2780CP and MDA-MB-231 cells. Importantly, all fractions displayed selectivity for cancer cells over normal HDF cells. Unique modes of action were observed, with the petroleum ether fraction inducing significant non-apoptotic cell death. These findings suggest promising therapeutic potential for Dorema hyrcanum in cancer treatment with subject to further mechanistic studies.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis , Breast Neoplasms , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioblastoma , Ovarian Neoplasms , Plant Extracts , Plant Roots , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Roots/chemistry , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Apoptosis/drug effects , Female , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Tumor Cells, Cultured , Cell Survival/drug effects , Reactive Oxygen Species/metabolism
10.
Front Genet ; 15: 1353118, 2024.
Article in English | MEDLINE | ID: mdl-38435062

ABSTRACT

Background: Sepsis, a global health challenge, necessitates a nuanced understanding of modifiable factors for effective prevention and intervention. The role of trace micronutrients in sepsis pathogenesis remains unclear, and their potential connection, especially with genetic influences, warrants exploration. Methods: We employed Mendelian randomization (MR) analyses to assess the causal relationship between genetically predicted blood levels of nine micronutrients (calcium, ß-carotene, iron, magnesium, phosphorus, vitamin C, vitamin B6, vitamin D, and zinc) and sepsis susceptibility, severity, and subtypes. The instrumental variables for circulating micronutrients were derived from nine published genome-wide association studies (GWAS). In the primary MR analysis, we utilized summary statistics for sepsis from two independent databases (UK Biobank and FinnGen consortium), for initial and replication analyses. Subsequently, a meta-analysis was conducted to merge the results. In secondary MR analyses, we assessed the causal effects of micronutrients on five sepsis-related outcomes (severe sepsis, sepsis-related death within 28 days, severe sepsis-related death within 28 days, streptococcal septicaemia, and puerperal sepsis), incorporating multiple sensitivity analyses and multivariable MR to address potential heterogeneity and pleiotropy. Results: The study revealed a significant causal link between genetically forecasted zinc levels and reduced risk of severe sepsis-related death within 28 days (odds ratio [OR] = 0.450; 95% confidence interval [CI]: 0.263, 0.770; p = 3.58 × 10-3). Additionally, suggestive associations were found for iron (increased risk of sepsis), ß-carotene (reduced risk of sepsis death) and vitamin C (decreased risk of puerperal sepsis). No significant connections were observed for other micronutrients. Conclusion: Our study highlighted that zinc may emerges as a potential protective factor against severe sepsis-related death within 28 days, providing theoretical support for supplementing zinc in high-risk critically ill sepsis patients. In the future, larger-scale data are needed to validate our findings.

11.
EPMA J ; 15(1): 1-23, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463624

ABSTRACT

Worldwide stroke is the second leading cause of death and the third leading cause of death and disability combined. The estimated global economic burden by stroke is over US$891 billion per year. Within three decades (1990-2019), the incidence increased by 70%, deaths by 43%, prevalence by 102%, and DALYs by 143%. Of over 100 million people affected by stroke, about 76% are ischemic stroke (IS) patients recorded worldwide. Contextually, ischemic stroke moves into particular focus of multi-professional groups including researchers, healthcare industry, economists, and policy-makers. Risk factors of ischemic stroke demonstrate sufficient space for cost-effective prevention interventions in primary (suboptimal health) and secondary (clinically manifested collateral disorders contributing to stroke risks) care. These risks are interrelated. For example, sedentary lifestyle and toxic environment both cause mitochondrial stress, systemic low-grade inflammation and accelerated ageing; inflammageing is a low-grade inflammation associated with accelerated ageing and poor stroke outcomes. Stress overload, decreased mitochondrial bioenergetics and hypomagnesaemia are associated with systemic vasospasm and ischemic lesions in heart and brain of all age groups including teenagers. Imbalanced dietary patterns poor in folate but rich in red and processed meat, refined grains, and sugary beverages are associated with hyperhomocysteinaemia, systemic inflammation, small vessel disease, and increased IS risks. Ongoing 3PM research towards vulnerable groups in the population promoted by the European Association for Predictive, Preventive and Personalised Medicine (EPMA) demonstrates promising results for the holistic patient-friendly non-invasive approach utilising tear fluid-based health risk assessment, mitochondria as a vital biosensor and AI-based multi-professional data interpretation as reported here by the EPMA expert group. Collected data demonstrate that IS-relevant risks and corresponding molecular pathways are interrelated. For examples, there is an evident overlap between molecular patterns involved in IS and diabetic retinopathy as an early indicator of IS risk in diabetic patients. Just to exemplify some of them such as the 5-aminolevulinic acid/pathway, which are also characteristic for an altered mitophagy patterns, insomnia, stress regulation and modulation of microbiota-gut-brain crosstalk. Further, ceramides are considered mediators of oxidative stress and inflammation in cardiometabolic disease, negatively affecting mitochondrial respiratory chain function and fission/fusion activity, altered sleep-wake behaviour, vascular stiffness and remodelling. Xanthine/pathway regulation is involved in mitochondrial homeostasis and stress-driven anxiety-like behaviour as well as molecular mechanisms of arterial stiffness. In order to assess individual health risks, an application of machine learning (AI tool) is essential for an accurate data interpretation performed by the multiparametric analysis. Aspects presented in the paper include the needs of young populations and elderly, personalised risk assessment in primary and secondary care, cost-efficacy, application of innovative technologies and screening programmes, advanced education measures for professionals and general population-all are essential pillars for the paradigm change from reactive medical services to 3PM in the overall IS management promoted by the EPMA.

12.
Pestic Biochem Physiol ; 199: 105761, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458672

ABSTRACT

Excessive acetochlor residues present ecological and food safety challenges. Here, broiler chicks were exposed to varied acetochlor doses to first assess its effects on the gut. Subsequent dietary supplementation with omega-3 was used to assess its anti-contamination effects. Pathologically, acetochlor induced notable ileal lesions including inflammation, barrier disruption, tight junction loss, and cellular anomalies. Mechanistically, acetochlor stimulated the TNFα/TNFR1 and TLR4/NF-κB/NLRP3 pathways, promoting RIPK1/RIPK3 complex formation, MLKL phosphorylation, NLRP3 inflammasome activation, Caspase-1 activation, and GSDMD shearing with inflammatory factor release. These mechanisms elucidate ileal cell death patterns essential for understanding chicken enteritis. Omega-3 supplementation showed promise in mitigating inflammation, though its precise counteractive role remains unclear. Our findings suggest early omega-3 intervention offered protective benefits against acetochlor's adverse intestinal effects, emphasizing its potential poultry health management role. Harnessing dietary interventions' therapeutic potential will be pivotal in ensuring sustainable poultry production and food safety despite persistent environmental contaminants.


Subject(s)
Chickens , NLR Family, Pyrin Domain-Containing 3 Protein , Toluidines , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chickens/metabolism , NF-kappa B/metabolism , Inflammation , Dietary Supplements , Ileum/metabolism , Fatty Acids, Unsaturated/therapeutic use
13.
Front Psychiatry ; 15: 1291362, 2024.
Article in English | MEDLINE | ID: mdl-38501090

ABSTRACT

Background: Machine learning is a promising tool in the area of suicide prevention due to its ability to combine the effects of multiple risk factors and complex interactions. The power of machine learning has led to an influx of studies on suicide prediction, as well as a few recent reviews. Our study distinguished between data sources and reported the most important predictors of suicide outcomes identified in the literature. Objective: Our study aimed to identify studies that applied machine learning techniques to administrative and survey data, summarize performance metrics reported in those studies, and enumerate the important risk factors of suicidal thoughts and behaviors identified. Methods: A systematic literature search of PubMed, Medline, Embase, PsycINFO, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Allied and Complementary Medicine Database (AMED) to identify all studies that have used machine learning to predict suicidal thoughts and behaviors using administrative and survey data was performed. The search was conducted for articles published between January 1, 2019 and May 11, 2022. In addition, all articles identified in three recently published systematic reviews (the last of which included studies up until January 1, 2019) were retained if they met our inclusion criteria. The predictive power of machine learning methods in predicting suicidal thoughts and behaviors was explored using box plots to summarize the distribution of the area under the receiver operating characteristic curve (AUC) values by machine learning method and suicide outcome (i.e., suicidal thoughts, suicide attempt, and death by suicide). Mean AUCs with 95% confidence intervals (CIs) were computed for each suicide outcome by study design, data source, total sample size, sample size of cases, and machine learning methods employed. The most important risk factors were listed. Results: The search strategy identified 2,200 unique records, of which 104 articles met the inclusion criteria. Machine learning algorithms achieved good prediction of suicidal thoughts and behaviors (i.e., an AUC between 0.80 and 0.89); however, their predictive power appears to differ across suicide outcomes. The boosting algorithms achieved good prediction of suicidal thoughts, death by suicide, and all suicide outcomes combined, while neural network algorithms achieved good prediction of suicide attempts. The risk factors for suicidal thoughts and behaviors differed depending on the data source and the population under study. Conclusion: The predictive utility of machine learning for suicidal thoughts and behaviors largely depends on the approach used. The findings of the current review should prove helpful in preparing future machine learning models using administrative and survey data. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022333454 identifier CRD42022333454.

14.
JMIR Res Protoc ; 13: e55662, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466979

ABSTRACT

BACKGROUND: In recent years, advancements in cancer treatment have enabled cancer cell inhibition, leading to improved patient outcomes. However, the side effects of chemotherapy, especially leukopenia, impact patients' ability to tolerate their treatments and affect their quality of life. Traditional Chinese medicine is thought to provide complementary cancer treatment to improve the quality of life and prolong survival time among patients with cancer. OBJECTIVE: This study aims to evaluate the effectiveness of Chinese herbal medicine (CHM) as a complementary treatment for neutropenia prevention and immunity modulation during chemotherapy in patients with breast cancer. METHODS: We will conduct a real-world pragmatic clinical trial to evaluate the effectiveness of CHM as a supplementary therapy to prevent neutropenia in patients with breast cancer undergoing chemotherapy. Patients will be classified into CHM or non-CHM groups based on whether they received CHM during chemotherapy. Using generalized estimating equations or repeated measures ANOVA, we will assess differences in white blood cell counts, absolute neutrophil counts, immune cells, and programmed cell death protein 1 (PD-1) expression levels between the 2 groups. RESULTS: This study was approved by the research ethics committee of Hualien Tzu Chi Hospital (IRB 110-168-A). The enrollment process began in September 2021 and will stop in December 2024. A total of 140 patients will be recruited. Data cleaning and analysis are expected to finish in the middle of 2025. CONCLUSIONS: Traditional Chinese medicine is the most commonly used complementary medicine, and it has been reported to significantly alleviate chemotherapy-related side effects. This study's findings may contribute to developing effective interventions targeting chemotherapy-related neutropenia among patients with breast cancer in clinical practice. TRIAL REGISTRATION: International Traditional Medicine Clinical Trial Registry ITMCTR2023000054; https://tinyurl.com/yc353hes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/55662.

15.
J Relig Health ; 63(2): 1038-1057, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466507

ABSTRACT

In this study, Indigenous Elders in Canada were interviewed to explore their conceptualizations of death and dying, particularly in relation to suicide. Through reflexive thematic analysis, three key themes were developed: Indigenous conceptions of death and dying, Christian influences on views of suicide, and indirect suicide. The theme of Indigenous conceptualizations of death and dying included the subthemes of spirituality and life after death, highlighting the importance of spiritual beliefs in Indigenous culture and knowledge systems. The impact of Christian influences on views of suicide was also explored, with participants discussing the complex nature of the relationship between Christianity and Indigenous peoples. Finally, the theme of indirect suicide was analyzed, referring to deaths resulting from behaviors that do not necessarily fit within the conventional definition of suicide. Overall, this study highlights the importance of honoring Indigenous cultural knowledge in research related to suicide prevention in Indigenous communities.


Subject(s)
Suicide , Humans , Aged , Suicide Prevention , Canada , Spirituality
16.
Nanomedicine (Lond) ; 19(10): 841-854, 2024 04.
Article in English | MEDLINE | ID: mdl-38436253

ABSTRACT

Aims: Preparation and evaluation of nanoparticles for tumor chemotherapy and immunotherapy mild photothermal therapy and oxaliplatin. Methods: The double emulsion method was used for nanoparticle preparations. Polydopamine was deposited on the surface, which was further modified with folic acid. Cytotoxicity assays were carried out by cell counting kit-8. In vivo antitumor assays were carried out on 4T1 tumor-bearing mice. Results: The nanoparticles exhibited a 190 nm-diameter pomegranate-like sphere, which could increase temperature to 43-46°C. In vivo distribution showed enhanced accumulation. The nanoparticles generated stronger immunogenic cell death effects. By stimulating the maturation of dendritic cells, mild photothermal therapy combined with oxaliplatin significantly increased the antitumor effect by a direct killing effect and activation of immunotherapy. Conclusion: This study provided a promising strategy of combination therapy for tumors.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Animals , Mice , Oxaliplatin/therapeutic use , Photothermal Therapy , Phototherapy/methods , Neoplasms/drug therapy , Immunotherapy , Cell Line, Tumor
17.
Phytomedicine ; 128: 155536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513379

ABSTRACT

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Subject(s)
Butyrates , Lung Neoplasms , Sesquiterpenes , Sesquiterpenes/pharmacology , Butyrates/pharmacology , Tracheophyta/chemistry , Cell Line, Tumor , Lung Neoplasms/drug therapy , Humans , A549 Cells , THP-1 Cells , Toxicity Tests , Cell Movement/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Animals
18.
Phytomedicine ; 128: 155504, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452404

ABSTRACT

BACKGROUND: Pinellia pedatisecta Schott extract (PE) is extracted from Pinellia pedatisecta Schott (PPS), a traditional Chinese medicinal plant with the potential for direct anticancer effects or eliciting an anti-tumor response by activating the immune system. PURPOSE: To explore PE's ability and mechanism to reconstruct cisplatin's immunogenicity. METHODS: Cervical cancer cells were treated with cisplatin (CDDP) and/or PE. The exposure of calreticulin (CRT) on cell membrane was investigated by flow cytometry. The extracellular of ATP and HMGB1 was investigated by Western blot analysis, immunofluorescence and ELISA assay. Changes in immune profiles were using flow cytometry in vaccination and anti-tumor assays in vivo. Lastly, the mechanism of PE influenced the ROS/ERS pathway was examined by ROS assay kit, flow cytometry and Western blotting. RESULTS: PE treatment induced translocation of CRT from the endoplasmic reticulum to the cell membrane of tumor cells, concomitantly triggering immunogenic cell death (ICD). In terms of mechanisms, endoplasmic reticulum (ER) stress relievers could impede the ability of PE to induce immunogenicity. This indicates that PE is activated by ER stress, leading to subsequent induction of ICD. Upon analyzing RNA-seq data, it was observed that PE primarily induces programmed cell death in tumors by impeding upstream antioxidant mechanisms. Additionally, it transforms dying tumor cells into vaccines, activating a series of immune responses. CONCLUSIONS: This study observed for the first time that PE-induced CRT exposure on the membrane of cervical cancer cells compensates for the defect of nonimmunogenic cell death inducer CDDP thereby stimulating potent ICD. This ability restores the immunogenicity of CDDP through ER stress induced by the ROS signal. ROS played a role in PE's ability to induce ICD, leading to increased expression of ER stress-related proteins, including ATF3 and IRE-1α. PE exerted anti-cancer effects by increasing the ROS levels, and ROS/ERS signaling may be a potential avenue for cervical cancer treatment. Hence, the synergistic use of PE and CDDP holds potential for enhancing immunochemotherapy in cancer treatment.


Subject(s)
Calreticulin , Cisplatin , Endoplasmic Reticulum Stress , Immunogenic Cell Death , Pinellia , Reactive Oxygen Species , Uterine Cervical Neoplasms , Cisplatin/pharmacology , Uterine Cervical Neoplasms/drug therapy , Female , Pinellia/chemistry , Endoplasmic Reticulum Stress/drug effects , Humans , Immunogenic Cell Death/drug effects , Reactive Oxygen Species/metabolism , Animals , Plant Extracts/pharmacology , HMGB1 Protein/metabolism , Mice , Cell Line, Tumor , Mice, Inbred BALB C , HeLa Cells , Antineoplastic Agents/pharmacology
19.
Phytomedicine ; 128: 155558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547614

ABSTRACT

BACKGROUND: The experimental autoimmune myocarditis (EAM) model is valuable for investigating myocarditis pathogenesis. M1-type macrophages and CD4+T cells exert key pathogenic effects on EAM initiation and progression. Baicalein (5,6,7-trihydroxyflavone, C15H10O5, BAI), which is derived from the Scutellaria baicalensis root, is a primary bioactive compound with potent anti-inflammatory and antioxidant properties. BAI exerts good therapeutic effects against various autoimmune diseases; however, its effect in EAM has not been thoroughly researched. PURPOSE: This study aimed to explore the possible inhibitory effect of BAI on M1 macrophage polarisation and CD4+T cell differentiation into Th1 cells via modulation of the JAK-STAT1/4 signalling pathway, which reduces the secretion of pro-inflammatory factors, namely, TNF-α and IFN-γ, and consequently inhibits TNF-α- and IFN-γ-triggered apoptosis in cardiomyocytes of the EAM model mice. STUDY DESIGN AND METHODS: Flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (q-PCR), and western blotting were performed to determine whether BAI alleviated M1/Th1-secreted TNF-α- and IFN-γ-induced myocyte death in the EAM model mice through the inhibition of the JAK-STAT1/4 signalling pathway. RESULTS: These results indicate that BAI intervention in mice resulted in mild inflammatory infiltrates. BAI inhibited JAK-STAT1 signalling in macrophages both in vivo and in vitro, which attenuated macrophage polarisation to the M1 type and reduced TNF-α secretion. Additionally, BAI significantly inhibited the differentiation of CD4+T cells to Th1 cells and IFN-γ secretion both in vivo and in vitro by modulating the JAK-STAT1/4 signalling pathway. This ultimately led to decreased TNF-α and IFN-γ levels in cardiac tissues and reduced myocardial cell apoptosis. CONCLUSION: This study demonstrates that BAI alleviates M1/Th1-secreted TNF-α- and IFN-γ-induced cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway.


Subject(s)
Apoptosis , Disease Models, Animal , Flavanones , Interferon-gamma , Janus Kinases , Myocarditis , Myocytes, Cardiac , STAT1 Transcription Factor , Signal Transduction , Tumor Necrosis Factor-alpha , Animals , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Myocytes, Cardiac/drug effects , Janus Kinases/metabolism , Mice , Flavanones/pharmacology , Male , Interferon-gamma/metabolism , Apoptosis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Myocarditis/drug therapy , STAT4 Transcription Factor/metabolism , Autoimmune Diseases/drug therapy , Mice, Inbred BALB C , Macrophages/drug effects , Macrophages/metabolism , Scutellaria baicalensis/chemistry , Th1 Cells/drug effects , Cell Differentiation/drug effects
20.
Acta Biomater ; 177: 400-413, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38336268

ABSTRACT

Herein, we developed a doxorubicin (Dox)-loaded and 4T1 cancer cell membrane-modified hydrogenated manganese oxide nanoparticles (mHMnO-Dox) to elicit systemic antitumor immune responses. The results revealed that mHMnO-Dox actively recognized tumor cells and then effectively delivered Dox into the cells. Upon entering tumor cells, the mHMnO-Dox underwent rapid degradation and abundant release of Mn2+ and chemotherapeutic drugs. The released Mn2+ not only catalysed a Fenton-type reaction to produce excessive reactive oxygen species (ROS) but also activated the cGAS-STING pathway to boost dendritic cell (DC) maturation. This process increased cytotoxic T lymphocyte infiltration as well as natural killer cell recruitment into the tumor site. In addition, the released Dox could contribute to a chemotherapeutic effect, while activating DC cells and subsequently intensifying immune responses through immunogenic cell death (ICD) of tumor cells. Consequently, the mHMnO-Dox suppressed the primary and distal tumor growth and inhibited tumor relapse and metastasis, as well as prolonged the lifespan of tumor-bearing mice. Thus, the mHMnO-Dox multimodally activated DC cells to demonstrate synergistic antitumor activity, which was mediated via the activation of the cGAS-STING signalling pathway to regulate tumor microenvironment, ICD-mediated immunotherapy and ROS-mediated CDT. These findings suggest the therapeutic potential of mHMnO-Dox in cancer immunotherapy. STATEMENT OF SIGNIFICANCE: A cancer cell membrane-camouflaged hydrogenated mesoporous manganese oxide (mHMnO) has been developed as a cGAS-STING agonist and ICD inducer. The mHMnO effectively induced abundance of ROS production in cancer cells, which caused cancer cell death and then promoted DC maturation via tumour-associated antigen presentation. Meanwhile, the mHMnO significantly activated cGAS-STING pathway to facilitate DC maturation and cytotoxic T lymphocyte infiltration as well as natural killer cell recruitment, which further enhanced tumour immune response. In addition, the combination of the mHMnO and Dox could synergistically promote tumour ICD and then multimodally induce DC maturation, achieving an enhanced CIT. Overall, this study provides a potential strategy to design novel immunologic adjuvant for enhanced CIT.


Subject(s)
Immunotherapy , Manganese Compounds , Neoplasms , Oxides , Animals , Mice , Reactive Oxygen Species , Doxorubicin , Neoplasms/drug therapy , Dendritic Cells , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL